解:原式·························································· 4分 ·························································································································· 6分 当.时. 原式···································································································· 8分 查看更多

 

题目列表(包括答案和解析)

如图①,在等腰直角三角板ABC中,斜边BC为2个单位长度,现把这块三角板在平面直角坐标系xOy中滑动,并使B、C两点始终分别位于y轴、x轴的正半轴上,直角顶点A与原点O位于BC两侧.
(1)取BC中点D,问OD+DA是否发生改变,若会,说明理由;若不会,求出OD+DA;
(2)你认为OA的长度是否会发生变化?若变化,那么OA最长是多少?OA最长时四边形OBAC是怎样的四边形?并说明理由;
(3)填空:当OA最长时A的坐标(
2
2
2
2
),直线OA的解析式
y=x
y=x

查看答案和解析>>

如图,在梯形中,.另有一直角三角形,点与点重合,点与点重合,点上,让的边上,点上,以每秒1个单位的速度沿着方向向右运动,如图,点与点重合时停止运动,设运动时间为秒.

(1)在上述运动过程中,请分别写出当四边形为正方形和四边形为平行四边形时对应时刻的值或范围;

(2)以点为原点,以所在直线为轴,过点垂直于的直线为轴,建立如图所示的坐标系.求过三点的抛物线的解析式;

(3)探究:延长交(2)中的抛物线于点,是否存在这样的时刻使得的面积与梯形的面积相等?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

如图,在梯形中,.另有一直角三角形,点与点重合,点与点重合,点上,让的边上,点上,以每秒1个单位的速度沿着方向向右运动,如图,点与点重合时停止运动,设运动时间为秒.

(1)在上述运动过程中,请分别写出当四边形为正方形和四边形为平行四边形时对应时刻的值或范围;

(2)以点为原点,以所在直线为轴,过点垂直于的直线为轴,建立如图所示的坐标系.求过三点的抛物线的解析式;

(3)探究:延长交(2)中的抛物线于点,是否存在这样的时刻使得的面积与梯形的面积相等?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

如图,在梯形中,.另有一直角三角形,点与点重合,点与点重合,点上,让的边上,点上,以每秒1个单位的速度沿着方向向右运动,如图,点与点重合时停止运动,设运动时间为秒.

(1)在上述运动过程中,请分别写出当四边形为正方形和四边形为平行四边形时对应时刻的值或范围;

(2)以点为原点,以所在直线为轴,过点垂直于的直线为轴,建立如图所示的坐标系.求过三点的抛物线的解析式;

(3)探究:延长交(2)中的抛物线于点,是否存在这样的时刻使得的面积与梯形的面积相等?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

(12分)如图,抛物线:y=ax2+bx+4与x轴交于点A(-2,0)和B(4,0)、与

y轴交于点C.

(1)求抛物线的解析式;

 (2)T是抛物线对称轴上的一点,且△ACT是以AC为底的等腰三角形,求点T的坐标;

(3)点M、Q分别从点A、B以每秒1个单位长度的速度沿x轴同时出发相向而行.当点M原点时,点Q立刻掉头并以每秒  个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动.过点M的直线l⊥轴,交AC或BC于点P.求点M的运动时间t(秒)与△APQ的面积S的函数关系式,并求出S的最大值.

 

查看答案和解析>>


同步练习册答案