运用等差数列的通项公式. 查看更多

 

题目列表(包括答案和解析)

已知数列中,,点在直线上,其中…。

(1)令,证明数列是等比数列;

(2)设分别为数列的前项和,证明数列是等差数列。

【解析】本试题主要考查了等差数列和等比数列的通项公式以及数列的求和的综合运用问题。既考查了概念,又考查了同学们的计算能力。

 

查看答案和解析>>

在递增等差数列)中,已知的等比中项.

(1)求数列的通项公式;

(2)设数列的前项和为,求使的最小值.

【解析】本试题主要考查了数列通项公式的求解以及前n项和公式的运用。并求解最值。

 

查看答案和解析>>

有四个数:前三个成等差数列,后三个成等比数列。首末两数和为16,中间两数和为12。求这四个数。                                

【解析】本试题主要是考查了等差数列和等比数列的通项公式的运用。

 

查看答案和解析>>

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.

【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1.     第二问中,,由第一问中知道,然后利用裂项求和得到Tn.

解: (Ⅰ) 设:{an}的公差为d,

因为解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因为……………8分

 

查看答案和解析>>

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>


同步练习册答案