题目列表(包括答案和解析)
10-x |
10+x |
10-x |
10+x |
仔细阅读下面问题的解法:
设A=[0, 1],若不等式21-x-a>0在A上有解,求实数a的取值范围。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上单调递减,f(x)max =f(0)=2. ∴实数a的取值范围为a<2.
研究学习以上问题的解法,请解决下面的问题:
(1)已知函数f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=,x∈A,试判断g(x)的单调性(写明理由,不必证明);
(3)若B ={x|>2x+a–5},且对于(1)中的A,A∩B≠F,求实数a的取值范围。
设函数f(x)=在[1,+∞上为增函数.
(1)求正实数a的取值范围;
(2)比较的大小,说明理由;
(3)求证:(n∈N*, n≥2)
【解析】第一问中,利用
解:(1)由已知:,依题意得:≥0对x∈[1,+∞恒成立
∴ax-1≥0对x∈[1,+∞恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=在[1,+∞)上为增函数,
∴n≥2时:f()=
(3) ∵ ∴
解:因为有负根,所以在y轴左侧有交点,因此
解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点
(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数
数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com