已知关于x的二次函数f(x)=x2+(2t-1)x+1-2t. (1)求证:对于任意t∈R.方程f(x)=1必有实数根, (2)若<t<.求证:方程f(x)=0在区间内各有一个实数根. 解:(1)证明:由f(1)=1知f(x)=1必有实数根. (2)当<t<时.因为f(-1)=3-4t=4(-t)>0. f(0)=1-2t=2(-t)<0. f()=+(2t-1)+1-2t=-t>0. 所以方程f(x)=0在区间内各有一个实数根. 查看更多

 

题目列表(包括答案和解析)

已知关于x的二次函数f(x)=ax2-4bx+1
(Ⅰ)设集合P={1,2,3},集合Q={-1,1,2,3,4},从集合P中随机取一个数作为a,从集合Q中随机取一个数作为b,求函数f(x)在区间[1,+∞)上是增函数的概率;
(Ⅱ)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

已知关于x的二次函数f(x)=x2+(2t-1)x+1-2t.
(1)求证:对于任意t∈R,方程f(x)=1必有实数根;
(2)若方程f(x)=0在区间(-1,2)上有两个实数根,求t的范围.

查看答案和解析>>

已知关于x的二次函数f(x)=ax2-2bx-1,(其中常数a、b∈R),满足
a+b-6≤0
a>0
b>0
,则函数y=f(x)在区间[2,+∞)上是增函数的概率是(  )
A、
1
4
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

已知关于x的二次函数f(x)=ax2-8bx+1.
(1)设集合M={1,2,3}和N={-1,1,2,3,4,5},从集合M中随机取一个数作为a,从N中随机取一个数作为b,求函数y=f(x)在区间[2,+∞)上是增函数的概率;
(2)设点(a,b)是区域
x+y-6≤0
x>0
y>0
内的随机点,求函数y=f(x)在区间[2,+∞)上是增函数的概率.

查看答案和解析>>

精英家教网已知关于x的二次函数f(x)=x2+ax-b(a,b∈R).
(Ⅰ)当b=-2时,由于对任意的x∈R,函数f(x)的值总大于零,求实数a的取值范围;
(Ⅱ)如果方程f(x)=0有一个负根和一个不大于1的正根,求实数a,b满足的条件,并在右图所给坐标系中画出点(a,b)所在的平面区域;
(Ⅲ)在第(Ⅱ)问的条件下,若实数k满足b=k(a+1)+3,求k的取值范围.

查看答案和解析>>


同步练习册答案