21. 已知定点和定直线.若点到直线的距离为且 (1)求点的轨迹方程, (2)若.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>

(本题满分18分)第(1)小题满分4分,第(2)小题满分8分,第(3)小题满分6分。

定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”。如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比。已知椭圆

若椭圆,判断是否相似?如果相似,求出的相似比;如果不相似,请说明理由;

写出与椭圆相似且短半轴长为的椭圆的方程;若在椭圆上存在两点关于直线对称,求实数的取值范围?

如图:直线与两个“相似椭圆”分别交于点和点,证明:

查看答案和解析>>

(本题满分18分)第(1)小题满分4分,第(2)小题满分8分,第(3)小题满分6分。

定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”。如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比。已知椭圆

若椭圆,判断是否相似?如果相似,求出的相似比;如果不相似,请说明理由;

写出与椭圆相似且短半轴长为的椭圆的方程;若在椭圆上存在两点关于直线对称,求实数的取值范围?

如图:直线与两个“相似椭圆”分别交于点和点,证明:

查看答案和解析>>

(本题满分18分)第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分。

圆锥曲线上任意两点连成的线段称为弦。若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦。已知椭圆C:

(1)过椭圆C的右焦点作一条垂直于轴的垂轴弦,求的长度;

(2)若点是椭圆C上不与顶点重合的任意一点,是椭圆C的短轴,直线分别交轴于点和点(如右图),求的值;

(3)在(2)的基础上,把上述椭圆C一般化为是任意一条垂直于轴的垂轴弦,其它条件不变,试探究是否为定值?(不需要证明);请你给出双曲线中相类似的结论,并证明你的结论。

查看答案和解析>>


同步练习册答案