方程的曲线和曲线的方程 在直角坐标系中.如果某曲线(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解, (2)以这个方程的解为坐标的点都是曲线上的点.那么.这个方程叫做曲线的方程.这条曲线叫做方程的曲线. 查看更多

 

题目列表(包括答案和解析)

在直角坐标系xOy中,点P到两点(0,-
3
)
(0,
3
)
的距离之和等于4,设点P的轨迹为C.
(1)求曲线C的方程;
(2)过点(0,
3
)
作两条互相垂直的直线l1、l2分别与曲线C交于A、B和C、D,以线段AB为直径的圆过能否过坐标原点,若能,求直线AB的斜率,若不能说明理由.

查看答案和解析>>

在直角坐标系xOy中,点P到两点(0,-
3
)
(0,
3
)
的距离之和等于4,设点P的轨迹为C.
(1)求曲线C的方程;
(2)过点(0,
3
)
作两条互相垂直的直线l1,l2分别与曲线C交于A,B和CD.
①以线段AB为直径的圆过能否过坐标原点,若能求出此时的k值,若不能说明理由;
②求四边形ABCD面积的取值范围.

查看答案和解析>>

在直角坐标系中,以原点O为极点,x轴为正半轴为极轴,建立极坐标系.设曲线C:
x=
3
cosα
y=sinα
(α为参数);直线l:ρ(cosθ+sinθ)=4.
(Ⅰ)写出曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系、设曲线C参数方程为
x=
3
cosθ
y= sinθ
(θ为参数),直线l的极坐标方程为ρcos(θ-
π
4
)=2
2

(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

在直角坐标系xoy中,点P到两点(0,-
3
),(0,
3
)的距离之和等于4,设点P的轨迹为曲线C,直线y=kx+1与曲线C交于A、B两点.
(I)写出曲线C的方程.
(II)当∠AOB是锐角时,求k的取值范围.

查看答案和解析>>


同步练习册答案