圆锥曲线综合问题 ⑴直线与圆锥曲线的位置关系和判定 直线与圆锥曲线的位置关系有三种情况:相交.相切.相离. 直线方程是二元一次方程,圆锥曲线方程是二元二次方程,由它们组成的方程组,经过消元得到一个一元二次方程,直线和圆锥曲线相交.相切.相离的充分必要条件分别是... ⑵直线与圆锥曲线相交所得的弦长 直线具有斜率,直线与圆锥曲线的两个交点坐标分别为,则它的弦长 上面的公式实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为.运用韦达定理来进行计算. 当直线斜率不存在是,则. 注: 1.圆锥曲线.一要重视定义.这是学好圆锥曲线最重要的思想方法.二要数形结合.既熟练掌握方程组理论.又关注图形的几何性质.以简化运算, 查看更多

 

题目列表(包括答案和解析)

设F(1,0),点M在x轴上,点P在y轴上,且

(1)当点P在y轴上运动时,求点N的轨迹C的方程;

(2)设是曲线C上的点,且成等差数列,当AD的垂直平分线与x轴交于点E(3,0)时,求点B的坐标。

【解析】本试题主要是对于圆锥曲线的综合考查。首先求解轨迹方程,利用向量作为工具表示向量的坐标,进而达到关系式的求解。第二问中利用数列的知识和直线方程求解点的坐标。

 

查看答案和解析>>


同步练习册答案