15. 已知平面截圆柱体,截口是一条封闭曲线,且截面与底面所成的 角为30°,此曲线是 ,它的离心率为 . 查看更多

 

题目列表(包括答案和解析)

(几何证明选讲选做题)已知平面截圆柱体,截口是一条封闭曲线,且截面与底面所成的角为30°,此曲线是           ,它的离心率为         .

 

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2sin(),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2sin(),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵
(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:

查看答案和解析>>


同步练习册答案