1.探究互为反函数的函数的图像关系 观察讨论函数.反函数的图像.归纳结论:函数的图象和它的反函数的图象关于直线对称. 查看更多

 

题目列表(包括答案和解析)

我们知道,y=ax(a>0且a≠1)与y=logax(a>0且a≠1)互为反函数。只要把其中一个进行指对互化,就可以得到它的反函数的解析式。任意一个函数y=f(x),将x用y表示出来能否得到它的反函数?据函数的定义:对于自变量x的每一个值y都有唯一确定的值与之对应,如果存在反函数,应是对于y的每一个值,x都有唯一确定的值与之对应,据此探究下列函数是否存在反函数?若是,反函数是什么?若否,为什么?
(1)y=2x+1;
(2)y=
(3)y=x2
(4)y=

查看答案和解析>>

我们知道,(0<a≠1)与(0<a≠1)互为反函数,只要把同底的指数函数与对数函数的解析式互化,就可以由其中的一个得到它的反函数的解析式.仿此,请探究函数y=2x+1是否有反函数.如果有,你能否求出反函数?

查看答案和解析>>

我们知道,(0a1)(0a1)互为反函数,只要把同底的指数函数与对数函数的解析式互化,就可以由其中的一个得到它的反函数的解析式.仿此,请探究函数y=2x1是否有反函数.如果有,你能否求出反函数?

查看答案和解析>>


同步练习册答案