例5. 如图5所示.在锐角△ABC中.高线BE与CF相交于H. 求证:. 图5 分析:求证式中的右端有线段的积.这使我们联想到如能创造出相似三角形.则会有对应线段成比例.就会出现线段的乘积式.为此添辅助线于D.则出现相似三角形.而求证式中的右端均为相似三角形的边.故可从相似三角形开始证明. 证明:过H作交BC于D. 则 即 (1) 查看更多

 

题目列表(包括答案和解析)

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>

例1     如图所示,填空。

1AD的角平分线,则                  

2AE的中线,则                  

3AF的高,则            

 

查看答案和解析>>

正方形通过剪切可以拼成三角形,方法如下:

仿照上例,用图示的方法,解答下列问题:

操作设计:  ①   ②

(1)

如图,对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形.

(2)

如图,对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形.

查看答案和解析>>

如图1,已知P为正方形ABCD的对角线AC上一点(不与AC重合),PEBC于点EPFCD于点F.

(1) 求证:BP=DP

(2) 如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;

(3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .

   图1     图2

查看答案和解析>>

阅读下列材料:

  我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;

这个结论可以推广为表示在数轴上对应点之间的距离;

例1 解方程,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2

例2 解不等式▏x-1▏>2,如图,在数轴上找出▏x-1▏=2的解,即到1的距离为2的点对应的数为-1、3,则▏x-1▏>2的解为x<-1或x>3

例3 解方程。由绝对值的几何意义知,该方程表示求在数轴上与1

和-2的距离之和为5的点对应的x的值。在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3

参考阅读材料,解答下列问题:

(1)方程的解为          

(2)解不等式≥9;

(3)若≤a对任意的x都成立,求a的取值范围.

查看答案和解析>>


同步练习册答案