17.某车间在两天内.每天生产10件某产品.其中第一天.第二天分别生产出了1件.2件次品.而质检部每天要从生产的10件产品中随意抽取4件进行检查.若发现有次品.则当天的产品不能通过.(Ⅰ)求两天全部通过检查的概率,(Ⅱ)求恰有一天通过检查的概率. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

      某车间在两天内,每天生产10件某产品,其中第一天、第二天分别生产出了1件、2

件次品.而质检部门每天要从生产的10件产品中随意抽取4件进行检查,若发现有次

品,则当天的产品不能通过.

      (Ⅰ)求第一天产品通过检查的概率;w.w.w.k.s.5.u.c.o.m              

      (Ⅱ)求两天全部通过的概率.

查看答案和解析>>

(本小题满分12分)

某车间在三天内,每天生产件某产品,其中第一天、第二天、第三天分别生产出了件、件、件次品,质检部门每天要从生产的件产品中随机抽取件进行检测,若发现其中有次品,则当天的产品不能通过.

(1)求第一天的产品通过检测的概率;

(2)求这三天内,恰有两天能通过检测的概率.

查看答案和解析>>

(本小题满分12分)

某车间在三天内,每天生产件某产品,其中第一天、第二天、第三天分别生产出了件、件、件次品,质检部门每天要从生产的件产品中随机抽取件进行检测,若发现其中有次品,则当天的产品不能通过.

(1)求第一天的产品通过检测的概率;

(2)求这三天内,恰有两天能通过检测的概率.

查看答案和解析>>

(本小题满分12分)某车站每天上午发出两班客车,第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为.两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求:   (1)请预测旅客乘到第一班客车的概率; (2)旅客候车时间的分布列;   (3)旅客候车时间的数学期望.

查看答案和解析>>

(本小题满分12分)
某菜园要将一批蔬菜用汽车从所在城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.
若菜园恰能在约定日期(日)将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.
为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:

      统计信息
汽车行
驶路线
不堵车的情况下到达亚运村乙所需时间   (天)
堵车的情况下到达亚运村乙所需时间   (天)
堵车的
概率
运费
(万元)
公路1
2
3


公路2
1
4


 
(注:毛利润销售商支付给菜园的费用运费)
(Ⅰ) 记汽车走公路1时菜园获得的毛利润为(单位:万元),求的分布列和数学期望
(Ⅱ) 假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多?

查看答案和解析>>

一、选择题:

ADBAA    BCCDC

二、填空题:

11. ;        12. ;      13

14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

三、解答题:

16.解:(Ⅰ)

                                                                …………5分

成等比数列,知不是最大边

                                                    …………6分

(Ⅱ)由余弦定理

ac=2                                                                                                        …………11分

=                                                                          …………12分

17.解:(Ⅰ)第一天通过检查的概率为,       ………………………2分

第二天通过检查的概率为,                  …………………………4分

由相互独立事件得两天全部通过检查的概率为.        ………………6分

(Ⅱ)第一天通过而第二天不通过检查的概率为,    …………8分

第二天通过而第一天不通过检查的概率为,      ………………10分

由互斥事件得恰有一天通过检查的概率为.     ……………………12分

 

18.解:方法一

(Ⅰ)取的中点,连结,由,又,故,所以即为二面角的平面角.

在△中,

由余弦定理有

所以二面角的大小是.                              (6分)

(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直线上,所以点到平面的距离即为△的边上的高.

.                              …(12分)

 

19.解:(Ⅰ)设

则   ……①

     ……②

∴②-①得  2d2=0,∴d=p=0

                                            …………6分

(Ⅱ)当an=n时,恒等式为[S(1,n)]2=S(3,n)

证明:

相减得:

相减得:

                                         ………………………………13分

20.解:(Ⅰ)∵,∴

又∵,∴

∴椭圆的标准方程为.                                      ………(3分)

的斜率为0时,显然=0,满足题意,

的斜率不为0时,设方程为

代入椭圆方程整理得:

         

,从而

综合可知:对于任意的割线,恒有.                ………(8分)

(Ⅱ)

即:

当且仅当,即(此时适合于的条件)取到等号.

∴三角形△ABF面积的最大值是.                 ………………………………(13分)

 

21.解:(Ⅰ)              ……………………………………………4分

(Ⅱ)或者……………………………………………8分

(Ⅲ)略                                        ……………………………………13分

 

 


同步练习册答案