题目列表(包括答案和解析)
(本小题满分12分)二次函数的图象经过三点.
(1)求函数的解析式(2)求函数在区间上的最大值和最小值
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:;
(Ⅲ)设,证明:对任意的正整数n、m,均有(本小题满分12分)已知函数,其中a为常数.
(Ⅰ)若当恒成立,求a的取值范围;
(Ⅱ)求的单调区间.(本小题满分12分)
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m
(2)当时,求弦长|AB|的取值范围.
一、选择题:
ADBAA BCCDC
二、填空题:
11. ; 12. ; 13.
14(i) ③⑤ (ii) ②⑤ 15.(i)7; (ii).
三、解答题:
16.解:(Ⅰ)
…………5分
由成等比数列,知不是最大边
…………6分
(Ⅱ)由余弦定理
得ac=2 …………11分
= …………12分
17.解:(Ⅰ)第一天通过检查的概率为, ………………………2分
第二天通过检查的概率为, …………………………4分
由相互独立事件得两天全部通过检查的概率为. ………………6分
(Ⅱ)第一天通过而第二天不通过检查的概率为, …………8分
第二天通过而第一天不通过检查的概率为, ………………10分
由互斥事件得恰有一天通过检查的概率为. ……………………12分
18.解:方法一
(Ⅰ)取的中点,连结,由知,又,故,所以即为二面角的平面角.
在△中,,,,
由余弦定理有
,
所以二面角的大小是. (6分)
(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直线上,所以点到平面的距离即为△的边上的高.
故. …(12分)
19.解:(Ⅰ)设
则 ……①
……②
∴②-①得 2d2=0,∴d=p=0
∴ …………6分
(Ⅱ)当an=n时,恒等式为[S(1,n)]2=S(3,n)
证明:
相减得:
∴
相减得:
又
又
∴ ………………………………13分
20.解:(Ⅰ)∵,∴,
又∵,∴,
∴,
∴椭圆的标准方程为. ………(3分)
当的斜率为0时,显然=0,满足题意,
当的斜率不为0时,设方程为,
代入椭圆方程整理得:.
,,.
则
,
而
∴,从而.
综合可知:对于任意的割线,恒有. ………(8分)
(Ⅱ),
即:,
当且仅当,即(此时适合于的条件)取到等号.
∴三角形△ABF面积的最大值是. ………………………………(13分)
21.解:(Ⅰ) ……………………………………………4分
(Ⅱ)或者……………………………………………8分
(Ⅲ)略 ……………………………………13分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com