△ABC中.AB=AC.BC=2,则(A) 不确定 查看更多

 

题目列表(包括答案和解析)

在三角形ABC中,已知AB=4,AC=2,内角A的平分线长AD=
4
3
3
,则BC=(  )

查看答案和解析>>

给出下列五个命题:
①若集合A={x|ax2+2x+1=0}中只有一个元素,则a=1;
②图象不经过点(-1,1)的幂函数,一定不是偶函数;
③函数f(x)在[a,b]上连续,且f(a)f(b)<0,则方程f(x)=0在(a,b)内只有唯一实根;
④设θ是第二象限角,则tan
θ
2
>cos
θ
2
,且sin
θ
2
>cos
θ
2

⑤设O使△ABC的外心,OD⊥BC于D,且|
AB
|=
3
,|
AC
|=1
,则 
AD
•(
AB
-
AC
)=1

其中正确命题序号为
②⑤
②⑤

查看答案和解析>>

给出下列五个命题:
①若集合A={x|ax2+2x+1=0}中只有一个元素,则a=1;
②图象不经过点(-1,1)的幂函数,一定不是偶函数;
③函数f(x)在[a,b]上连续,且f(a)f(b)<0,则方程f(x)=0在(a,b)内只有唯一实根;
④设θ是第二象限角,则tan
θ
2
>cos
θ
2
,且sin
θ
2
>cos
θ
2

⑤设O使△ABC的外心,OD⊥BC于D,且|
AB
|=
3
,|
AC
|=1
,则 
AD
•(
AB
-
AC
)=1

其中正确命题序号为______.

查看答案和解析>>

如图,已知△ABC中,∠C=
π
2
.设∠CBA=θ,BC=a,它的内接正方形DEFG的一边EF在斜边AB上,D、G分别在AC、BC上.假设△ABC的面积为S,正方形DEFG的面积为T.
(1)用a,θ表示△ABC的面积S和正方形DEFG的面积T;
(2)设f(θ)=
T
S
,试求f(θ)的最大值P,并判断此时△ABC的形状;
(3)通过对此题的解答,我们是否可以作如下推断:若需要从一块直角三角形的材料上裁剪一整块正方形(不得拼接),则这块材料的最大利用率要视该直角三角形的具体形状而定,但最大利用率不会超过第(2)小题中的结论P.请分析此推断是否正确,并说明理由.

查看答案和解析>>


同步练习册答案