题目列表(包括答案和解析)
如图1,在中,,D,E分别为AC,AB的中点,点F为线段CD上的一点,将沿DE折起到的位置,使,如图2.
(Ⅰ)求证:DE∥平面
(Ⅱ)求证:
(Ⅲ)线段上是否存在点Q,使?说明理由。
【解析】(1)∵DE∥BC,由线面平行的判定定理得出
(2)可以先证,得出,∵∴
∴
(3)Q为的中点,由上问,易知,取中点P,连接DP和QP,不难证出,∴∴,又∵∴
在平面区域内有一个圆,向该区域内随机投点,将点落在圆内的概率最大时的圆记为圆M。
(1)试求出圆M的方程;
(2)设过点P(0,3)作圆M的两条切线,切点分别记为A、B,又过P作圆N:的两条切线,切点分别记为C、D,试确定的值,使AB⊥CD。
在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.
(I)判别MN与平面AEF的位置关系,并给出证明;
(II)求多面体E-AFMN的体积.
【解析】第一问因翻折后B、C、D重合(如下图),所以MN应是的一条中位线,则利用线线平行得到线面平行。
第二问因为平面BEF,……………8分
且,
∴,又 ∴
(1)因翻折后B、C、D重合(如图),
所以MN应是的一条中位线,………………3分
则.………6分
(2)因为平面BEF,……………8分
且,
∴,………………………………………10分
又 ∴
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com