由(1)可得AB BC.CF AF. 查看更多

 

题目列表(包括答案和解析)

已知数列的各项均为正数,前项和为,且

 (1)求证数列是等差数列;

(2)设,求

【解析】(1)时,

时,由                (3’)

所以数列是等差数列                                                    (6’)

(2)由(1)可得 (8’)     (10’) 

 

查看答案和解析>>

已知过点的动直线与抛物线相交于两点.当直线的斜率是时,

(1)求抛物线的方程;

(2)设线段的中垂线在轴上的截距为,求的取值范围.

【解析】(1)B,C,当直线的斜率是时,

的方程为,即                                (1’)

联立  得         (3’)

由已知  ,                    (4’)

由韦达定理可得G方程为            (5’)

(2)设,BC中点坐标为               (6’)

 由       (8’)

    

BC中垂线为             (10’)

                  (11’)

 

查看答案和解析>>

(2010•上海模拟)对于函数y=f(x)的图象上任意两点A(a,f(a)),B(b,f(b)),设点C分
AB
的比为λ(λ>0).若函数为f(x)=x2(x>0),则直线AB必在曲线AB的上方,且由图象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函数为f(x)=log2010x,请分析该函数的图象特征,上述不等式可以得到不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
log2010a+log2010b
1+λ
log2010
a+λb
1+λ

查看答案和解析>>

设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,xn和y1,y2,…,yn,由此得到V个点(x,y)(i-1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为
 

查看答案和解析>>

拓展探究题
(1)已知两个圆:①x2+y2=1;②x2+(y-3)2=1,则由①式减去②式可得两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为
已知两个圆:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,则由①式减去②式可得两圆的对称轴方程
已知两个圆:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,则由①式减去②式可得两圆的对称轴方程

(2)平面几何中有正确命题:“正三角形内任意一点到三边的距离之和等于定值,大小为边长的
3
2
倍”,请你写出此命题在立体几何中类似的真命题:
正四面体内任意一点到四个面的距离之和是一个定值,大小为棱长的
6
3
正四面体内任意一点到四个面的距离之和是一个定值,大小为棱长的
6
3

查看答案和解析>>


同步练习册答案