故存在点Q.当CQ=时.点A到平面EFQ的距离为0.8.解法二:建立如图所示的空间直角坐标系A-xyz.则A.C. 查看更多

 

题目列表(包括答案和解析)

精英家教网(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为
4
5
?若存在,求出线段CQ的长;若不存在,请说明理由.
(文)已知坐标平面内的一组基向量为
e
1
=(1,sinx)
e
2
=(0,cosx)
,其中x∈[0,
π
2
)
,且向量
a
=
1
2
e
1
+
3
2
e
2

(1)当
e
1
e
2
都为单位向量时,求|
a
|

(2)若向量
a
和向量
b
=(1,2)
共线,求向量
e
1
e
2
的夹角.

查看答案和解析>>

(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为?若存在,求出线段CQ的长;若不存在,请说明理由.
(文)已知坐标平面内的一组基向量为,其中,且向量
(1)当都为单位向量时,求
(2)若向量和向量共线,求向量的夹角.

查看答案和解析>>

如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD=2,E,F,G分别是线段PA、PD、CD的中点.
(1)求证:PB∥平面EFG
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为0.8,若存在,求出CQ的长,若不存在,请说明理由.

查看答案和解析>>

(2011•崇明县二模)(理)如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,点E、F、G分别为线段PA、PD和CD的中点.
(1)求异面直线EG与BD所成角的大小;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离恰为
45
?若存在,求出线段CQ的长;若不存在,请说明理由.

查看答案和解析>>

(2008•温州模拟)如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求证:PB∥平面EFG;
(2)求异面直线EG与BD所成的角;
(3)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为
45
.若存在,求出CQ的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案