20.在平面直角坐标系中,已知.满足向量与向量共线.且点都在斜率为6的同一条直线上.若.求 (1)数列的通项 (2)数列{}的前n项和 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),满足向量
AnAn+1
与向量
BnCn
共线,且点Bn(n,bn)(n∈N*)都在斜率为6的同一条直线上,若a1=6,b1=12.求:
(1)数列{an}的通项an
(2)数列{
1
an
}的前n项和Tn

查看答案和解析>>

在平面直角坐标系中,已知向量
a
=(mx,2(y-2))
b
=(x,y+2)
(m∈R),且满足
a
b
,动点M(x,y)的轨迹为C.
(Ⅰ)求轨迹C的方程,并说明该方程所表示的轨迹的形状;
(Ⅱ)若已知圆O:x2+y2=1,当m=1时,过点M作圆O的切线,切点为A、B,求向量
OA
OB
的最大值和最小值.

查看答案和解析>>

在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中a2+b2≠0且ω>0.设f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在区间[0,2π]内的解集;
(2)若点A是过点(-1,1)且法向量为
n
=(-1,1)
的直线l上的动点.当x∈R时,设函数f(x)的值域为集合M,不等式x2+mx<0的解集为集合P.若P⊆M恒成立,求实数m的最大值;
(3)根据本题条件我们可以知道,函数f(x)的性质取决于变量a、b和ω的值.当x∈R时,试写出一个条件,使得函数f(x)满足“图象关于点(
π
3
,0)
对称,且在x=
π
6
处f(x)取得最小值”.

查看答案和解析>>

在平面直角坐标系中,已知点A(1,0),向量
e
=(0,1),点B为直线x=-1上的动点,点C满足2
OC
=
OA
+
OB
,点M满足
BM
•e=0
CM
AB
=0

(1)试求动点M的轨迹E的方程;
(2)试证直线CM为轨迹E的切线.

查看答案和解析>>

在平面直角坐标系中,已知A1(-3,0),A2(3,0),P(x,y),M(
x2-9
,0)
,O为坐标原点,若实数λ使向量
A1P
λ
OM
A2P
满足:λ2(
OM
)2=
A1P
A2P
,设点P的轨迹为W.
(Ⅰ)求W的方程,并判断W是怎样的曲线;
(Ⅱ)当λ=
3
3
时,过点A1且斜率为1的直线与W相交的另一个交点为B,能否在直线x=-9上找到一点C,恰使△A1BC为正三角形?请说明理由.

查看答案和解析>>


同步练习册答案