∴.解得 查看更多

 

题目列表(包括答案和解析)

解析几何是数与形的结合,由方程组的解的组数可得图形的位置关系.例如,当两个圆组成方程组无解时,说明两圆无公共点,此时两圆的位置关系为相离,但可能是外离也可能是内含.你能判断方程组其他解的组数与两圆的位置间的关系吗?

查看答案和解析>>

解析几何是数与形的结合,由方程组的解的组数可得图形的位置关系.例如,当两个圆组成方程组无解时,说明两圆无公共点,此时两圆的位置关系为相离,但可能是外离也可能是内含.你能判断方程组其他解的组数与两圆的位置间的关系吗?

查看答案和解析>>

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

6. 解析:因为f(x)=ax+b有一个零点是2,所以f(2)=2a+b=0,所以b=-2a,所以,所以零点是

一所大学图书馆有6台复印机供学生使用管理人员发现,每台机器的维修费用与其使用的时间有一定的关系,根据去年一年的记录,得到每周使用时间(单位:小时)与年维修费用(单位:元)的数据如下:

时间

33

21

31

37

46

42

费用

16

14

25

29

38

34

则使用时间与维修费用之间的相关系数为        

查看答案和解析>>

解::因为,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=与y=-在(0,+)上都是增函数,因此在(0,+)上是增函数,所以零点个数只有一个方法2:把函数的零点个数个数问题转化为判断方程解的个数问题,近而转化成判断交点个数问题,在坐标系中画出图形


由图看出显然一个交点,因此函数的零点个数只有一个

袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.

查看答案和解析>>


同步练习册答案