由M.N两点在椭圆上. 查看更多

 

题目列表(包括答案和解析)

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以AF2为直径的圆与直线y=
3
x+2
相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0),使得以PM、PN为邻边的平行四边形是菱形?若存在,求实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,过原点O斜率为1的直线l与椭圆C相交于M,N两点,椭圆右焦点F到直线l的距离为
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是椭圆上异于M,N外的一点,当直线PM,PN的斜率存在且不为零时,记直线PM的斜率为k1,直线PN的斜率为k2,试探究k1•k2是否为定值?若是,求出定值;若不是,说明理由.

查看答案和解析>>

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0
,|F1F2|=2.
(1)求椭圆C的方程;
(2)过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

查看答案和解析>>

设椭圆E:
x2
a2
+
y2
b2
=1
(a,b>0),O为坐标原点,
(1)椭圆E:
x2
a2
+
y2
b2
=1
(a,b>0)过M(2,
2
),N(
6
,1)两点,求椭圆E的方程;
(2)若a>b>0,两个焦点为 F1(-c,0),F2(c,0),M为椭圆上一动点,且满足
F1M
F2M
=0,求椭圆离心率的范围.
(3)在(1)的条件下,是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
OA
OB
?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由.

查看答案和解析>>

设椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求曲线C1,C2的标准方程;
(Ⅱ)设直线l与椭圆C1交于不同两点M、N,且
OM
ON
=0,请问是否存在直线l过抛物线C2的焦点F?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案