∴N的坐标(.)--.12分 查看更多

 

题目列表(包括答案和解析)

(12分)直角梯形ABCD中, ∠DAB=90°,AD//BC,

  AB=2, AD=, BC=,椭圆E以A,B为焦点且经过点D.  (1)建立适当的直角坐标系,求椭圆E的方程;  (2)若点Q满足:,问是否存在不平行AB,的直线与椭圆E交于M、N两点.且|MQ|=|NQ|.若存在,求直线的斜率的取值范围,若不存在,请说明理由.

查看答案和解析>>

(12分)已知曲线C:x2+y2-2x-4y+m=0

(1)当m为何值时,曲线C表示圆;

(2)若曲线C与直线x+2y-4=0交于M、N两点,且OM⊥ON(O为坐标原点),求m的值。

 

查看答案和解析>>

(12分) 如图1-5,在平面直角坐标系xOy中,M、N分别是椭圆+=1的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.

(1)若直线PA平分线段MN,求k的值;

(2)当k=2时,求点P到直线AB的距离d;

(3)对任意的k>0,求证:PA⊥PB.

 

 

 

查看答案和解析>>

(12分)  如图,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.

 

 

(1)建立适当的平面直角坐标系,求曲线C的方程;

(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设=λ,求λ的取值范围.

 

 

查看答案和解析>>

(12分) 如图,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.

(1)建立适当的平面直角坐标系,求曲线C的方程;
(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设=λ,求λ的取值范围.

查看答案和解析>>


同步练习册答案