所以曲线的方程为:, ----6分 查看更多

 

题目列表(包括答案和解析)

给出以下命题:
①双曲线的渐近线方程为
②命题p:“?x∈R+”是真命题;
③已知线性回归方程为,当变量x增加2个单位,其预报值平均增加4个单位;
④设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(-1<ξ<0)=0.6;
⑤已知,依照以上各式的规律,得到一般性的等式为,(n≠4)
则正确命题的序号为    (写出所有正确命题的序号).

查看答案和解析>>

给出以下命题:
①双曲线数学公式的渐近线方程为数学公式
②命题p:“?x∈R+数学公式”是真命题;
③已知线性回归方程为数学公式,当变量x增加2个单位,其预报值平均增加4个单位;
④设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(-1<ξ<0)=0.6;
⑤已知数学公式数学公式数学公式数学公式,依照以上各式的规律,得到一般性的等式为数学公式,(n≠4)
则正确命题的序号为________(写出所有正确命题的序号).

查看答案和解析>>

设函数

(1)当时,求曲线处的切线方程;

(2)当时,求的极大值和极小值;

(3)若函数在区间上是增函数,求实数的取值范围.

【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。

解:(1)当……2分

   

为所求切线方程。………………4分

(2)当

………………6分

递减,在(3,+)递增

的极大值为…………8分

(3)

①若上单调递增。∴满足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

时,不合题意。综上所述,实数的取值范围是

 

查看答案和解析>>

选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,将C1上的所有点的横坐标、纵坐标分别伸长为原来的
3
、2倍后得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(Ⅰ)试写出直线l的直角坐标方程和曲线C2的参数方程;
(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,将C1上的所有点的横坐标、纵坐标分别伸长为原来的数学公式、2倍后得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(Ⅰ)试写出直线l的直角坐标方程和曲线C2的参数方程;
(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>


同步练习册答案