题目列表(包括答案和解析)
(本题满分14分)设数列{an}的各项均为正数,它的前n项和为Sn(n∈N*),已知点(an,4Sn)在函数f (x)=x2+2x+1的图象上.(1)证明{an}是等差数列,并求an;(2)设m、k、p∈N*,m+p=2k,求证:+≥;(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由。
(本题满分14分)
设数列{an}的各项均为正数,它的前n项和为Sn(n∈N*),已知点(an,4Sn)在函数f (x)=x2+2x+1的图象上.(1)证明{an}是等差数列,并求an;(2)设m、k、p∈N*,m+p=2k,求证:+≥;(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由。
(本小题满分14分)已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前项和.
(1)求、和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
(本小题满分14分)
已知各项均为正数的数列{an}前n项和为Sn,(p – 1)Sn = p2 – an,n ∈N*,p > 0且p≠1,数列{bn}满足bn = 2logpan.
(Ⅰ)若p =,设数列的前n项和为Tn,求证:0 < Tn≤4;
(Ⅱ)是否存在自然数M,使得当n > M时,an > 1恒成立?若存在,求出相应的M;若不存在,请说明理由.
(本小题满分14分)已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前项和.
(1)求、和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com