题目列表(包括答案和解析)
当m>1时,关于x的不等式x2+(m-1)x-m≥0的解集是
A.{x|x≤1,或x≥-m} B. {x|1≤x≤-m }
C.{x|x≤-m,或x≥1} D. {x|-m≤x≤1 }
某同学在研究函数f(x)=x2ex的性质时,得到如下结论:
①f(x)的单调递增区间是(0,+∞);
②f(x)在x=0处取极小值,在x=-2处取极大值;
③f(x)有最小值,无最大值;
④f(x)的图象与它在(0,0)处的切线有两个交点;
⑤当m>1时,f(x)的图象与直线x=m只有一个交点.
其中正确结论的序号是 .
(把你认为正确结论的序号都填上)
.设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x, y,均有
f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0。
(1)求f(1), f()的值;
(2)试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(3)一个各项均为正数的数列{a??n}满足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是数列{an}的前n项和,求数列{an}的通项公式;
(4)在(3)的条件下,是否存在正数M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)对于一切n∈N*均成立?若存在,求出M的范围;若不存在,请说明理由.
设函数f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com