8.线性规划 (1)平面区域 一般地.二元一次不等式在平面直角坐标系中表示某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式所表示的平面区域时.此区域应包括边界直线.则把直线画成实线. 说明:由于直线同侧的所有点的坐标代入.得到实数符号都相同.所以只需在直线某一侧取一个特殊点.从的正负即可判断表示直线哪一侧的平面区域.特别地.当时.通常把原点作为此特殊点. (2)有关概念 引例:设.式中变量满足条件.求的最大值和最小值. 由题意.变量所满足的每个不等式都表示一个平面区域.不等式组则表示这些平面区域的公共区域.由图知.原点不在公共区域内.当时..即点在直线:上.作一组平行于的直线:..可知:当在的右上方时.直线上的点满足.即.而且.直线往右平移时.随之增大. 由图象可知.当直线经过点时.对应的最大. 当直线经过点时.对应的最小.所以... 在上述引例中.不等式组是一组对变量的约束条件.这组约束条件都是关于的一次不等式.所以又称为线性约束条件.是要求最大值或最小值所涉及的变量的解析式.叫目标函数.又由于是的一次解析式.所以又叫线性目标函数. 一般地.求线性目标函数在线性约束条件下的最大值或最小值的问题.统称为线性规划问题.满足线性约束条件的解叫做可行解.由所有可行解组成的集合叫做可行域.在上述问题中.可行域就是阴影部分表示的三角形区域.其中可行解和分别使目标函数取得最大值和最小值.它们都叫做这个问题的最优解. 课前预习 查看更多

 

题目列表(包括答案和解析)


同步练习册答案