3.已知:.求证:. 证明:由已知得 . ⑴÷⑵.得. ∴.即 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然界对数的底,a∈R)
(1)求f(x)的解析式;
(2)设g(x)=
ln|x|
|x|
,x∈[-e,0)
,求证:当a=-1时,f(x)>g(x)+
1
2

(3)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是3?如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

已知关于x的方程
sinxx
=k(k∈(0,1))
在(-3π,0)∪(0,3π)内有且仅有4个根,从小到大依次为x1,x2,x3,x4
(1)求证:x4=tanx4.
(2)是否存在常数k,使得x2,x3,x4成等差数列?若存在求出k的值,否则说明理由.

查看答案和解析>>

已知函数f(x)=x2,g(x)=2elnx(x>0)(e为自然对数的底数).
(1)当x>0时,求证:f′(x)+g′(x)≥4
e

(2)求F(x)=f(x)-g(x)(x>0)的单调区间及最小值;
(3)试探究是否存在一次函数y=kx+b(k,b∈R),使得f(x)≥kx+b且g(x)≤kx+b对一切x>0恒成立,若存在,求出该一次函数的表达式;若不存在,请说明理由.

查看答案和解析>>

已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)设bn=
4
n•(an+7)
(n∈N*),数列{bn}的前n项和为Tn,求证:
1
2
Tn<1

(3)是否存在常数c(c≠0),使得数列{
Sn
n+c
}
为等差数列?若存在,试求出c;若不存在,说明理由.

查看答案和解析>>

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*
(1)证明:{an-1}是等比数列;
(2)求数列{Sn}的通项公式.请指出n为何值时,Sn取得最小值,并说明理由.

查看答案和解析>>


同步练习册答案