两个函数图家象的相同点与不同点和变化规律 查看更多

 

题目列表(包括答案和解析)

【倾听理解】(这是一次数学活动课上,师生利用“几何画板”软件探究函数性质的活动片段)
如图,若直线x=m(m>0)分别交x轴,曲线y=
2
x
(x>0)和y=
3
x
(x>0)于点P,M,N.
师:同学们能发现怎样的结论呢?
生1:当m=1时,M点坐标(1,2)…
生2:当m=2时,有
MN
PM
=
1
2


师:很好!大家从一个图形出发,发现这么多结论!
【一起参与】
请你写出4个不同类型的结论.
答:
(1)
根据图象知,在第一象限内,y随x的增大而减小
根据图象知,在第一象限内,y随x的增大而减小

(2)
点M与点N的横坐标相同
点M与点N的横坐标相同

(3)
这两个反比例函数的图象都是双曲线
这两个反比例函数的图象都是双曲线

(4)
这两个函数图象与坐标轴没有交点
这两个函数图象与坐标轴没有交点

查看答案和解析>>

(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米.

①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围;







②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.






(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定……比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图.(实线表示乌龟,虚线表示兔子)

查看答案和解析>>

在- 次数学活动课上,老师出了- 道题:
  (1) 解方程x2-2x-3=0.
     巡视后老师发现同学们解此题的方法有公式法、配方法和十字相乘法( 分解因式法) 。
   接着, 老师请大家用自己熟悉的方法解第二道题:
  (2) 解关于x 的方程mx2+(m -3)x -3=0(m 为常数,且m ≠0).
     老师继续巡视,及时观察、点拨大家. 再接着, 老师将第二道题变式为第三道题:
(3) 已知关于x 的函数y=mx2+(m-3)x-3(m 为常数).
  ①求证:不论m 为何值, 此函数的图象恒过x 轴、y 轴上的两个定点( 设x 轴上的定点为A ,y 轴上的定点为C) ;    
   ②若m ≠0 时, 设此函数的图象与x 轴的另一个交点为反B, 当△ABC 为锐角三角形时, 求m 的取值范围;当△ABC 为钝角三角形时,观察图象,直接写出m 的取值范围.
    请你也用自己熟悉的方法解上述三道题.    

查看答案和解析>>

在-次数学活动课上,老师出了-道题:

  (1)解方程x2-2x-3=0.

    巡视后老师发现同学们解此题的方法有公式法、配方法和十字相乘法(分解因式法)。

  接着,老师请大家用自己熟悉的方法解第二道题:

  (2)解关于x的方程mx2+(m一3)x一3=0(m为常数,且m≠0).

    老师继续巡视,及时观察、点拨大家.再接着,老师将第二道题变式为第三道题:

(3)已知关于x的函数y=mx2+(m-3)x-3(m为常数).

 ①求证:不论m为何值,此函数的图象恒过x轴、y轴上的两个定点(设x轴上的定点为A,y轴上的定点为C);   

  ②若m≠0时,设此函数的图象与x轴的另一个交点为反B,当△ABC为锐角三角形时,求m的取值范围;当△ABC为钝角三角形时,观察图象,直接写出m的取值范围.

   请你也用自己熟悉的方法解上述三道题.   

查看答案和解析>>

(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米.
①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围?
②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.
精英家教网
(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定…比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图.(实线表示乌龟,虚线表示兔子)

查看答案和解析>>


同步练习册答案