所示. 足够长的光滑平行金属导轨MN.PQ固定在同一水平面上.两导轨间距L=0.30m.导轨电阻忽略不计.其间连接有定值电阻R=0.40Ω.导轨上静置一质量m=0.10kg.电阻r=0.20Ω的金属杆ab.整个装置处于磁感应强度B=0.50T的匀强磁场中.磁场方向竖直向下.用一外力F沿水平方向拉金属杆ab.使它由静止开始运动(金属杆与导轨接触良好并保持与导轨垂直).电流传感器可随时测出通过R的电流并输入计算机.获得电流I随时间t变化的关系如图(乙)所示.求金属杆开始运动2.0s时: (1)金属杆ab受到安培力的大小和方向, (2)金属杆的速率, (3)对图像分析表明.金属杆在外力作用下做的是匀加速直线运动.加速度大小a=0.40m/s2.计算2.0s时外力做功的功率. 查看更多

 

题目列表(包括答案和解析)

如图甲所示,足够长的光滑平行金属导轨MN、PQ所在平面与水平面成30°角,两导轨的间距l=0.50m,一端接有阻值R=1.0Ω的电阻.质量m=0.10kg的金属棒ab置于导轨上,与轨道垂直,电阻r=0.25Ω.整个装置处于磁感应强度B=1.0T的匀强磁场中,磁场方向垂直于导轨平面向下.t=0时刻,对金属棒施加一平行于导轨向上的外力F,使之由静止开始沿斜面向上运动,运动过程中电路中的电流随时间t变化的关系如图乙所示.电路中
其他部分电阻忽略不计,g取10m/s2,求:
(1)4.0s末金属棒ab瞬时速度的大小;
(2)4.0s末力F的瞬时功率.

查看答案和解析>>

如图甲所示,足够长的光滑平行金属导轨MNPQ所在平面与水平面成30°角,两导轨的间距l=0.50m,一端接有阻值R=1.0Ω的电阻。质量m=0.10kg的金属棒ab置于导轨上,与轨道垂直,电阻r=0.25Ω。整个装置处于磁感应强度B=1.0T的匀强磁场中,磁场方向垂直于导轨平面向下。t=0时刻,对金属棒施加一平行于导轨向上的外力F,使之由静止开始沿斜面向上运动,运动过程中电路中的电流随时间t变化的关系如图乙所示。电路中其他部分电阻忽略不计,g取10m/s2,求:   
(1)4.0s末金属棒ab瞬时速度的大小;
(2)4.0s末力F的瞬时功率。

查看答案和解析>>

如图甲所示,足够长的光滑平行金属导轨MNPQ所在平面与水平面成30°角,两导轨的间距l0.50 m,一端接有阻值R1.0 Ω的电阻.质量m0.10 kg的金属棒ab置于导轨上,与导轨垂直,电阻r0.25 Ω.整个装置处于磁感应强度B1. 0 T的匀强磁场中,磁场方向垂直于导轨平面向下.t0时刻,对金属棒施加一平行于导轨向上的外力F,使之由静止开始运动,运动过程中电路中的电流随时间t变化的关系如图乙所示.电路中其他部分电阻忽略不计,g10 m/s2.求:

 

(1)4.0 s末金属棒ab瞬时速度的大小;

(2)3.0 s末力F的瞬时功率;

(3)已知04.0 s时间内电阻R上产生的热量为0.64 J,试计算F对金属棒所做的功.

 

查看答案和解析>>

(10分)如图甲所示,足够长的光滑平行金属导轨MN、PQ所在平面与水平面成30°角,两导轨的间距l=0.50m,一端接有阻值R=1.0Ω的电阻。质量m=0.10kg的金属棒ab置于导轨上,与轨道垂直,电阻r=0.25Ω。整个装置处于磁感应强度B=1.0T的匀强磁场中,磁场方向垂直于导轨平面向下。t=0时刻,对金属棒施加一平行于导轨向上的外力F,使之由静止开始沿斜面向上运动,运动过程中电路中的电流随时间t变化的关系如图乙所示。电路中其他部分电阻忽略不计,g取10m/s2,求:   

(1)4.0s末金属棒ab瞬时速度的大小;

(2)4.0s末力F的瞬时功率。

 

查看答案和解析>>

如图甲所示,足够长的光滑平行金属导轨MN、PQ倾斜放置,两导轨间距离L="l.0" m,导轨平面与水平面间的夹角,磁感应强度为B的匀强磁场垂直于导轨平面向上,导轨的M、P两端连接阻值R=1.5Ω的电阻,金属棒ab垂直于导轨放置并用细线通过光滑定滑轮与重物相连,金属棒ab的质量m=0.4kg,电阻r=0.5Ω,重物的质量M=0.6kg。现将金属棒由静止释放,金属棒沿导轨上滑的距离与时间的关系图象如图乙所示。不计导轨电阻,g取10m/s2。求:

(1)磁感应强度B的大小;
(2)1.5 s时间内通过电阻R的电荷量;
(3)1.5 s时间内电阻R产生的热量。

查看答案和解析>>


同步练习册答案