题目列表(包括答案和解析)
在四棱锥中,平面,底面为矩形,.
(Ⅰ)当时,求证:;
(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.
【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,
又因为,………………2分
又,得证。
第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
设BQ=m,则Q(1,m,0)(0《m《a》
要使,只要
所以,即………6分
由此可知时,存在点Q使得
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得
由此知道a=2, 设平面POQ的法向量为
,所以 平面PAD的法向量
则的大小与二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值为
解:(Ⅰ)当时,底面ABCD为正方形,
又因为,又………………3分
(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,
则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
设BQ=m,则Q(1,m,0)(0《m《a》要使,只要
所以,即………6分
由此可知时,存在点Q使得
当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,
设平面POQ的法向量为
,所以 平面PAD的法向量
则的大小与二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值为
如图,将一张矩形的纸对折以后略微展开,竖立在桌面上,说明折痕为什么与桌面垂直.
从图中可直观地看出,折痕垂直于对折后的纸与桌面所形成的交线.由直线与平面垂直的判定定理知,折痕与桌面垂直.那么在折痕垂直于纸与桌面的交线未知的情况下,单凭折后的纸与桌面垂直,能否得出折痕与桌面垂直?转化为数学语言,即如果两个相交平面都垂直于第三个平面,那么它们的交线也垂直于第三个平面吗?下面用不同的方法证明.
如图,已知平面α⊥平面β,平面α⊥平面γ,且β∩γ=a,β∩α=l,γ∩α=m.
求证:a⊥α.
如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求二面角的大小.
【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面,平面,∴平面由,,又,∴平面. 可得证明
(3)因为∴为面的法向量.∵,,
∴为平面的法向量.∴利用法向量的夹角公式,,
∴与的夹角为,即二面角的大小为.
方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点、,
∴,又点,,∴
∴,且与不共线,∴.
又平面,平面,∴平面.…………………4分
(Ⅱ)∵,
∴,,即,,
又,∴平面. ………8分
(Ⅲ)∵,,∴平面,
∴为面的法向量.∵,,
∴为平面的法向量.∴,
∴与的夹角为,即二面角的大小为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com