14.已知:函数的定义域为A, ,则的取值范围是 , 查看更多

 

题目列表(包括答案和解析)

已知:函数的定义域为A,,则a的取值范围是________

查看答案和解析>>

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a•(
1
2
)x+(
1
4
)x
g(x)=
1-m•2x
1+m•2x

(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(3)若m>0,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.

查看答案和解析>>

13、已知函数y=lg(4-x)的定义域为A,集合B={x|x<a},若P:“x∈A”是Q:“x∈B”的充分不必要条件,则实数a的取值范围
a>4

查看答案和解析>>

15、已知定义域为(O,+∞)的函数f(x)满足:①对任意x∈(0,+∞),恒有f(10x)=10f(x),②当x∈(1,10]时,f(x)=x-lgx,②.记区间Ik=(10k,10k+1],其中k∈Z,当x∈Ik(k=0,1,2,3,…)时.f(x)的取值构成区间Dk,定义区间(a,b)的区间长度为b-a,设区间Dk在区间Ik上的补集的区间长度为ak,则a1=
10
,ak=
10k

查看答案和解析>>

已知下列命题:
①若f(x)为减函数,则-f(x)为增函数;
②若f(0)<f(4),则函数f(x)不是R上的减函数;
③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
④设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.
⑤若函数f(x)=
(2-m)x+2m(x<1)
(m-1)|x+1|(x≥1)
在R上是增函数,则m的取值范围是1<m<2;
其中正确命题的序号有
①②④
①②④
(把所有正确命题的番号都填上)

查看答案和解析>>

一、选择题(每小题5分,共60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

C

D

A

D

B

D

B

B

A

C

二、填空题(每小题5分,共20分)

  13、f(x)=2x3-12x         14、           15、2             16、0≤a≤3

三、解答题

17(10分).解:原不等式等价于-----------------------------------2分

--------------------------------------------4分

 

-------------------------------------------------6分

 

-------------------------------------------------8分

综上:   --------------------------------10分

18(12分). 解:(Ⅰ)

                         ----------------3分

      -----------------------------4分

  

的单调区间为     ----------------6分

(Ⅱ)由----------7分

的内角,---------8分

          -------------------10分

     ------------12分

19(12分).解:⑴对任意的正数均有

----------2分

,                 ----------------------------------------4分

是定义在上的单调函数,.     ----------6分

(2)当时,.----------8分

时,

.                 ----------------------------------------10分

为等差数列.

.                      -----------------------------------------12分

20(12分). (1)y==  

     t=2-cosx  ∵x∈[0,) ∴t∈[1,2)         -----------------------------------------3分

     ∴y===t+ -1

     ∵y=t+ -1在t∈[1,2)上为增函数  ∴y∈[1,)     即M=[1,)           6分

  (2)由(x-a-1)(2a-x)>0即 (x-a-1)(x-2a)<0  ∵a<1∴2a<a+1  ∴N=(2a,a+1)    8分

     又∁UM=(-∞,1)∪[,+∞)                                             10分

     要使N⊆∁UM,需a+1≤1或2a≥,得 a≤0或 a≥.                       12分

21(12分).解:对函数求导,得

----------------------------2分

解得

变化时,的变化情况如下表:

x

0

 

0

 

减函数

增函数

                                                ----------------------4分

所以,当时,是减函数;当时,是增函数;

           当时,的值域为   ----------------------------6分

(Ⅱ)对函数求导,得

                                 

    因此,当时,

因此当,g(x)为减函数,从而当时有个g(x)

又g(1)=   ----------------8分

若对于任意,存在,使得,则

[]

              ----------------------------------------10分

式得

式得

故:的取值范围为                 -----------------------------------12分

22(12分). :(1)∵Sn=2an ?n  ∴Sn+1=2an+1 ?(n+1) 两式相减得, an+1=2an+1----------------2分

     数列{an+λ}是等比数列  即: an+1+λ=2(an+λ),∴λ=1.

      ∵a1=s1=2a1-1,∴a1=1 

     ∵数列{ an+1}是首项为2,公比为2的等比数列          ------------------------4分

∴an+1=(a1+1)2n-1=2n,∴an=2n -1                         ------------------------6分

   (2)∵an=2n -1

     ∴bn ====-----------------10分

     ∴Tn=(-)+(-)+…+(-)=1-<1. ----------------12分

 

 

 


同步练习册答案