作用力与反作用力的二力平衡的区别 内容 作用力和反作用力 二力平衡 受力物体 作用在两个相互作用的物体上 作用在同一物体上 依赖关系 同时产生.同时消失相互依存.不可单独存在 无依赖关系.撤除一个.另一个可依然存在.只是不再平衡 叠加性 两力作用效果不可抵消.不可叠加.不可求合力 两力运动效果可相互抵消.可叠加.可求合力.合力为零,形变效果不能抵消 力的性质 一定是同性质的力 可以是同性质的力也可以不是同性质的力 查看更多

 

题目列表(包括答案和解析)

第十部分 磁场

第一讲 基本知识介绍

《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。

一、磁场与安培力

1、磁场

a、永磁体、电流磁场→磁现象的电本质

b、磁感强度、磁通量

c、稳恒电流的磁场

*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I 、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB 。矢量式d= k,(d表示导体元段的方向沿电流的方向、为导体元段到考查点的方向矢量);或用大小关系式dB = k结合安培定则寻求方向亦可。其中 k = 1.0×10?7N/A2 。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。

毕萨定律应用在“无限长”直导线的结论:B = 2k 

*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI 

*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI 。其中n为单位长度螺线管的匝数。

2、安培力

a、对直导体,矢量式为 = I;或表达为大小关系式 F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。

b、弯曲导体的安培力

⑴整体合力

折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。

证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为

F = 

  = BI

  = BI

关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。

证毕。

由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)

⑵导体的内张力

弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。

c、匀强磁场对线圈的转矩

如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为

M = BIS

几种情形的讨论——

⑴增加匝数至N ,则 M = NBIS ;

⑵转轴平移,结论不变(证明从略);

⑶线圈形状改变,结论不变(证明从略);

*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα ,如图9-3;

证明:当α = 90°时,显然M = 0 ,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…

⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ ,如图9-4。

证明:当β = 90°时,显然M = 0 ,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…

说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。

二、洛仑兹力

1、概念与规律

a、 = q,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。

b、能量性质

由于总垂直确定的平面,故总垂直 ,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。

问题:安培力可以做功,为什么洛仑兹力不能做功?

解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v ,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1 = qv1B的合力(见图9-5)。

很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)

☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?

若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。

2、仅受洛仑兹力的带电粒子运动

a、时,匀速圆周运动,半径r =  ,周期T = 

b、成一般夹角θ时,做等螺距螺旋运动,半径r =  ,螺距d = 

这个结论的证明一般是将分解…(过程从略)。

☆但也有一个问题,如果将分解(成垂直速度分量B2和平行速度分量B1 ,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?

其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)

3、磁聚焦

a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。

b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。

4、回旋加速器

a、结构&原理(注意加速时间应忽略)

b、磁场与交变电场频率的关系

因回旋周期T和交变电场周期T′必相等,故 =

c、最大速度 vmax = = 2πRf

5、质谱仪

速度选择器&粒子圆周运动,和高考要求相同。

第二讲 典型例题解析

一、磁场与安培力的计算

【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。

【解说】这是一个关于毕萨定律的简单应用。解题过程从略。

【答案】大小为8.0×10?6T ,方向在图9-9中垂直纸面向外。

【例题2】半径为R ,通有电流I的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。

【解说】本题有两种解法。

方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。因为θ 

查看答案和解析>>

(2013?静安区二模)一个物体静止在水平桌面上,下列说法中正确的是(  )

查看答案和解析>>

(2012?浦东新区二模)如图所示,高为0.3m的水平通道内,有一个与之等高的质量为M=1.2kg表面光滑的立方体,长为L=0.2m的轻杆下端用铰链连接于O点,O点固定在水平地面上竖直挡板的底部(挡板的宽度可忽略),轻杆的上端连着质量为m=0.3kg的小球,小球靠在立方体左侧.取g=10m/s2,sin37°=0.6,cos37°=0.8.
(1)为了使轻杆与水平地面夹角α=37°时立方体平衡,作用在立方体上的水平推力F1应为多大?
(2)若立方体在F2=4.5N的水平推力作用下从上述位置由静止开始向左运动,则刚要与挡板相碰时其速度多大?
(3)立方体碰到挡板后即停止运动,而轻杆带着小球向左倒下碰地后反弹恰好能回到竖直位置,若小球与地面接触的时间为t=0.05s,则小球对地面的平均冲击力为多大?
(4)当杆回到竖直位置时撤去F2,杆将靠在立方体左侧渐渐向右倒下,最终立方体在通道内的运动速度多大?

查看答案和解析>>

【选做题】请从A、B两模块中选定一个模块作答,如都作答则按A模块评分,本题选择题4分,非选择题8分,共12分.
A、(选修模块3-4)
(1)图一中所示是用光学的方法来检查一物体表面平整程度的装置,其中A为标准平板,B为被检查的物体,C为单色入射光.如要说明能检查平面平整程度的道理,则需要用到下列哪些光学概念?
A
A

A.反射和干涉B.全反射和干涉
C.反射和衍射D.全反射和衍射
(2)下列说法中正确的是
CD
CD

A.x射线穿透物质的本领比γ射线更强
B.红光由空气进入水中,波长变长、颜色不变
C.狭义相对论认为物体的质量与其运动状态有关
D.观察者相对于频率一定的声源运动时,接受到声波的频率可能发生变化
(3)在某介质中形成一列简谐波,波向右传播,在0.1s时刻刚好传到B点,波形如图二中实线所示,且再经过0.6s,P点也开始振动.

求:
①该列波的周期T;
②从t=0时刻起到P点第一次达到波峰时止,O点对平衡位置的位移y0及其所经过的路程s0各为多少?
B、(选修模块3-5)
(1).人们在研究原子结构时提出过许多模型,其中比较有名的是枣糕模型和核式结构模型,它们的模型示意图如图所示.

下列说法中正确的是
B
B

A.α粒子散射实验与枣糕模型和核式结构模型的建立无关
B.科学家通过α粒子散射实验否定了枣糕模型,建立了核式结构模型
C.科学家通过α粒子散射实验否定了核式结构模型,建立了枣糕模型
D.科学家通过α粒子散射实验否定了枣糕模型和核式结构模型,建立了波尔的原子模型
(2)从氢气放电管可以获得氢原子光谱.1885年瑞士中学教师巴尔末对当时已发现的在可见光区的谱线做了分析,发现这些谱线的波长可以用一个公式表示.如果采用波长λ的倒数,这个公式可写作:
1
λ
=Rn(
1
22
-
1
n2
)(n=3,4,5,6,…)(RH
为常数)
自巴尔末系发现后,人们又在紫外区和红外区发现了一些新的谱线,这些谱线也可以用类似巴尔末的简单公式来表示,例如赖曼系公式:
1
λ
=RH(
1
12
-
1
n2
)(n=2,3,4,5,…)
(RH为常数)
1913年丹麦物理学家玻尔提出了著名的原子结构和氢光谱理论.上述两个公式中的n在波尔理论中被称为量子数.玻尔氢原子理论的能级图如图所示.

阅读了上面的资料后,你认为巴尔末系是氢原子能级图中的
B
B

A.线系I    B.线系II    C.线系III D.线系IV
(3)在光滑水平面上有一个静止的质量为M的木块,一颗质量为m的子弹以初速度v0水平射入木块而没有穿出,子弹射入木块的最大深度为d.设子弹射入木块的过程中木块运动的位移为s,子弹所受阻力恒定.试证明:s<d.

查看答案和解析>>

【选做题】请从A、B两模块中选定一个模块作答,如都作答则按A模块评分,本题选择题4分,非选择题8分,共12分.
A、(选修模块3-4)
(1)图一中所示是用光学的方法来检查一物体表面平整程度的装置,其中A为标准平板,B为被检查的物体,C为单色入射光.如要说明能检查平面平整程度的道理,则需要用到下列哪些光学概念?______
A.反射和干涉B.全反射和干涉
C.反射和衍射D.全反射和衍射
(2)下列说法中正确的是______
A.x射线穿透物质的本领比γ射线更强
B.红光由空气进入水中,波长变长、颜色不变
C.狭义相对论认为物体的质量与其运动状态有关
D.观察者相对于频率一定的声源运动时,接受到声波的频率可能发生变化
(3)在某介质中形成一列简谐波,波向右传播,在0.1s时刻刚好传到B点,波形如图二中实线所示,且再经过0.6s,P点也开始振动.

求:
①该列波的周期T;
②从t=0时刻起到P点第一次达到波峰时止,O点对平衡位置的位移y0及其所经过的路程s0各为多少?
B、(选修模块3-5)
(1).人们在研究原子结构时提出过许多模型,其中比较有名的是枣糕模型和核式结构模型,它们的模型示意图如图所示.

下列说法中正确的是______
A.α粒子散射实验与枣糕模型和核式结构模型的建立无关
B.科学家通过α粒子散射实验否定了枣糕模型,建立了核式结构模型
C.科学家通过α粒子散射实验否定了核式结构模型,建立了枣糕模型
D.科学家通过α粒子散射实验否定了枣糕模型和核式结构模型,建立了波尔的原子模型
(2)从氢气放电管可以获得氢原子光谱.1885年瑞士中学教师巴尔末对当时已发现的在可见光区的谱线做了分析,发现这些谱线的波长可以用一个公式表示.如果采用波长λ的倒数,这个公式可写作:
为常数)
自巴尔末系发现后,人们又在紫外区和红外区发现了一些新的谱线,这些谱线也可以用类似巴尔末的简单公式来表示,例如赖曼系公式:
(RH为常数)
1913年丹麦物理学家玻尔提出了著名的原子结构和氢光谱理论.上述两个公式中的n在波尔理论中被称为量子数.玻尔氢原子理论的能级图如图所示.

阅读了上面的资料后,你认为巴尔末系是氢原子能级图中的______
A.线系I    B.线系II    C.线系III D.线系IV
(3)在光滑水平面上有一个静止的质量为M的木块,一颗质量为m的子弹以初速度v0水平射入木块而没有穿出,子弹射入木块的最大深度为d.设子弹射入木块的过程中木块运动的位移为s,子弹所受阻力恒定.试证明:s<d.

查看答案和解析>>


同步练习册答案