题目列表(包括答案和解析)
解:(1)点C的坐标为.
∵ 点A、B的坐标分别为,
∴ 可设过A、B、C三点的抛物线的解析式为.
将代入抛物线的解析式,得.
∴ 过A、B、C三点的抛物线的解析式为.
(2)可得抛物线的对称轴为,顶点D的坐标为
,设抛物线的对称轴与x轴的交点为G.
直线BC的解析式为.
设点P的坐标为.
解法一:如图8,作OP∥AD交直线BC于点P,
连结AP,作PM⊥x轴于点M.
∵ OP∥AD,
∴ ∠POM=∠GAD,tan∠POM=tan∠GAD.
∴ ,即.
解得. 经检验是原方程的解.
此时点P的坐标为.
但此时,OM<GA.
∵
∴ OP<AD,即四边形的对边OP与AD平行但不相等,
∴ 直线BC上不存在符合条件的点P. - - - - - - - - - - - - - - - - - - - - - 6分
解法二:如图9,取OA的中点E,作点D关于点E的对称点P,作PN⊥x轴于
点N. 则∠PEO=∠DEA,PE=DE.
可得△PEN≌△DEG .
由,可得E点的坐标为.
NE=EG=, ON=OE-NE=,NP=DG=.
∴ 点P的坐标为.∵ x=时,,
∴ 点P不在直线BC上.
∴ 直线BC上不存在符合条件的点P .
(3)的取值范围是.
5 |
1 |
2 |
3 |
3 |
3 |
3 |
x2-2 |
x2-2 |
x2-x1 |
2 |
x1+x2 |
2 |
y2-y1 |
2 |
y1+y2 |
2 |
x1+x2 |
2 |
y1+y2 |
2 |
1 |
2 |
1 |
2 |
如图,在△ABC中,AB=2,AC="BC=" 5 .
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC;
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=" 3" ,y4="-" 3 .
所以,原方程的解是y1=1,y2=-1,y3=" 3" ,y4="-" 3 .
再如 ,可设 ,用同样的方法也可求解.
如图,在直角坐标系中,是原点,三点的坐标分别,四边形是梯形,点同时从原点出发,分别作匀速运动,其中点沿向终点运动,速度为每秒个单位,点沿向终点运动,当这两点有一点到达自己的终点时,另一点也停止运动.
(1)求直线的解析式.
(2)设从出发起,运动了秒.如果点的速度为每秒个单位,试写出点的坐标,并写出此时 的取值范围.
(3)设从出发起,运动了秒.当,两点运动的路程之和恰好等于梯形的周长的一半,这时,直线能否把梯形的面积也分成相等的两部分,如有可能,请求出的值;如不可能,请说明理由.
【解析】(1)根据待定系数法就可以求出直线OC的解析式(2)本题应分Q在OC上,和在CB上两种情况进行讨论.即0≤t≤5和5<t≤10两种情况(3)P、Q两点运动的路程之和可以用t表示出来,梯形OABC的周长就可以求得.当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,就可以得到一个关于t的方程,可以解出t的值.梯形OABC的面积可以求出,梯形OCQP的面积可以用t表示出来.把t代入可以进行检验
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com