形.其中点的坐标分别为A.D.(3.7).(3.3).求将四边形ABCD变成四边形的变换矩阵M. 查看更多

 

题目列表(包括答案和解析)

四边形ABCD和四边形分别是矩形和平行四边形,其中点的坐标分别为A(-1,2),B(3,2),C(3,-2),D(-1,-2),(-1,0),(3,8),(3,4), (-1,-4).求将四边形ABCD变成四边形的变换矩阵M.

查看答案和解析>>

如图所示, 四边形ABCD和四边形分别是矩形和平行四边形,其中点的坐标分别为A(-1,2),B(3,2),C(3,-2),D(-1,-2),(3,7),(3,3).求将四边形ABCD变成四边形的变换矩阵M

查看答案和解析>>

(本题满分14分)

在梯形ABCD中,AB⊥AD,AB∥CD,A、B是两个定点,其坐

标分别为(0,-1)、(0,1),C、D是两个动点,且满足|CD|=|BC|.

(1)求动点C的轨迹E的方程;

(2)试探究在轨迹E上是否存在一点P?使得P到直线y=x-2的

距离最短;

(3)设轨迹E与直线所围成的图形的

面积为S,试求S的最大值。

其它解法请参照给分。

查看答案和解析>>

(15分)在平面直角坐标系xOy中,矩形OABC的边OAOC分别在x轴和y轴上(如图),且OC=1,OA=a+1(a>1),点D在边OA上,满足OD=a. 分别以ODOC为长、短半轴的椭圆在矩形及其内部的部分为椭圆弧CD. 直线ly=-x+b与椭圆弧相切,与AB交于点E.

(1)求证:

(2)设直线l将矩形OABC分成面积相等的两部分,求直线l的方程;

(3)在(2)的条件下,设圆M在矩形及其内部,且与l和线段EA都相切,求面积最大的圆M的方程.

查看答案和解析>>

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>


同步练习册答案