题目列表(包括答案和解析)
已知函数=.
(Ⅰ)当时,求不等式 ≥3的解集;
(Ⅱ) 若≤的解集包含,求的取值范围.
【命题意图】本题主要考查含绝对值不等式的解法,是简单题.
【解析】(Ⅰ)当时,=,
当≤2时,由≥3得,解得≤1;
当2<<3时,≥3,无解;
当≥3时,由≥3得≥3,解得≥8,
∴≥3的解集为{|≤1或≥8};
(Ⅱ) ≤,
当∈[1,2]时,==2,
∴,有条件得且,即,
故满足条件的的取值范围为[-3,0]
已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,,为数列的前n项和.
(1)求数列的通项公式和数列的前n项和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
【解析】第一问利用在中,令n=1,n=2,
得 即
解得,, [
又时,满足,
,
第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.
,等号在n=2时取得.
此时 需满足.
②当n为奇数时,要使不等式恒成立,即需不等式恒成立.
是随n的增大而增大, n=1时取得最小值-6.
此时 需满足.
第三问,
若成等比数列,则,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又时,满足,
,
.
(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.
,等号在n=2时取得.
此时 需满足.
②当n为奇数时,要使不等式恒成立,即需不等式恒成立.
是随n的增大而增大, n=1时取得最小值-6.
此时 需满足.
综合①、②可得的取值范围是.
(3),
若成等比数列,则,
即.
由,可得,即,
.
又,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2, n=12时,数列中的成等比数列
设点是抛物线的焦点,是抛物线上的个不同的点().
(1) 当时,试写出抛物线上的三个定点、、的坐标,从而使得
;
(2)当时,若,
求证:;
(3) 当时,某同学对(2)的逆命题,即:
“若,则.”
开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);
② 对任意给定的大于3的正整数,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);
③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).
【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.
【解析】第一问利用抛物线的焦点为,设,
分别过作抛物线的准线的垂线,垂足分别为.
由抛物线定义得到
第二问设,分别过作抛物线的准线垂线,垂足分别为.
由抛物线定义得
第三问中①取时,抛物线的焦点为,
设,分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得
,
则,不妨取;;;
解:(1)抛物线的焦点为,设,
分别过作抛物线的准线的垂线,垂足分别为.由抛物线定义得
因为,所以,
故可取满足条件.
(2)设,分别过作抛物线的准线垂线,垂足分别为.
由抛物线定义得
又因为
;
所以.
(3) ①取时,抛物线的焦点为,
设,分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得
,
则,不妨取;;;,
则,
.
故,,,是一个当时,该逆命题的一个反例.(反例不唯一)
② 设,分别过作
抛物线的准线的垂线,垂足分别为,
由及抛物线的定义得
,即.
因为上述表达式与点的纵坐标无关,所以只要将这点都取在轴的上方,则它们的纵坐标都大于零,则
,
而,所以.
(说明:本质上只需构造满足条件且的一组个不同的点,均为反例.)
③ 补充条件1:“点的纵坐标()满足 ”,即:
“当时,若,且点的纵坐标()满足,则”.此命题为真.事实上,设,
分别过作抛物线准线的垂线,垂足分别为,由,
及抛物线的定义得,即,则
,
又由,所以,故命题为真.
补充条件2:“点与点为偶数,关于轴对称”,即:
“当时,若,且点与点为偶数,关于轴对称,则”.此命题为真.(证略)
已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.
(1)求函数f(x)的表达式;
(2)若数列{an}满足a1=,an+1=f(an),bn=-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;
(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}为等比数列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)证明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
设抛物线:(>0)的焦点为,准线为,为上一点,已知以为圆心,为半径的圆交于,两点.
(Ⅰ)若,的面积为,求的值及圆的方程;
(Ⅱ)若,,三点在同一条直线上,直线与平行,且与只有一个公共点,求坐标原点到,距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线于轴的焦点为E,圆F的半径为,
则|FE|=,=,E是BD的中点,
(Ⅰ) ∵,∴=,|BD|=,
设A(,),根据抛物线定义得,|FA|=,
∵的面积为,∴===,解得=2,
∴F(0,1), FA|=, ∴圆F的方程为:;
(Ⅱ) 解析1∵,,三点在同一条直线上, ∴是圆的直径,,
由抛物线定义知,∴,∴的斜率为或-,
∴直线的方程为:,∴原点到直线的距离=,
设直线的方程为:,代入得,,
∵与只有一个公共点, ∴=,∴,
∴直线的方程为:,∴原点到直线的距离=,
∴坐标原点到,距离的比值为3.
解析2由对称性设,则
点关于点对称得:
得:,直线
切点
直线
坐标原点到距离的比值为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com