13.设A=.B=.定义是A到B的函数. 是B到A的映射.若.则= 查看更多

 

题目列表(包括答案和解析)

设A、B是两个集合,并有下列条件:

(1)集合A中不同的元素,在集合B中有不同的象  (2)集合A、B都是非空的数集

(3)集合B中的每个元素在集合A中都有原象      (4)集合A中的任何元素在集合B中都有惟一的象

那么使对应f成为从定义域A到值域B上的函数的条件是


  1. A.
    (1)(2)(3)
  2. B.
    (1)(2)(4)
  3. C.
    (1)(3)(4)
  4. D.
    (2)(3)(4)

查看答案和解析>>

函数的概念

设A,B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个x,在集合B中都有________的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的函数,记作y=f(x),x∈A.

其中x叫________,x的取值范围A叫做函数y=f(x)的________;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}(B)叫做函数y=f(x)的________.函数符号y=f(x)表示“y是x的函数”,有时简记作函数________.

(1)函数实际上就是集合A到集合B的一个特殊对应f:A→B,这里A、B为________的数集.

(2)A:定义域;{f(x)|x∈A}:值域,其中{f(x)|x∈A}________B;f:对应法则,x∈A,y∈B.

(3)函数符号:y=f(x)y是x的函数,简记f(x).

查看答案和解析>>

记函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=
3x+a
x+b
图象上有两个关于原点对称的不动点,求实数a,b应满足的条件;
(2)设点P(x,y)到直线y=x的距离d=
|x-y|
2
.在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A1,A2,P为函数f(x)图象上的另一点,其纵坐标yP>3,求点P到直线A1A2距离的最小值及取得最小值时点P的坐标.
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,请给予证明;若不正确,请举一反例.若地方不够,可答在试卷的反面.

查看答案和解析>>

设函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=
3x+ax+b
图象上有两个关于原点对称的不动点,求a,b应满足的条件;
(2)在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A、B,点M为函数图象上的另一点,且其纵坐标yM>3,求点M到直线AB距离的最小值及取得最小值时M点的坐标;
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点的有奇数个”是否正确?若正确,给出证明,并举一例;若不正确,请举一反例说明.

查看答案和解析>>

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,试写出y=φ(x)的解析式及值域;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案