题目列表(包括答案和解析)
某农产品去年各季度的市场价格如下表:
今年某公司计划按去年各季度市场价格的“平衡价m”(平衡价m是这样的一个量:与上年各季度售价差比较,m与各季度售价差的平方和最小)收购该种农产品,并按每100元纳税10元(又称征税率为10个百分点),计划可收购a万吨,政府为了鼓励收购公司多收购这种农产品,决定将税率降低x个百分点,预测收购量可增加2x个百分点.
(Ⅰ)根据题中条件填空,m=________(元/吨);
(Ⅱ)写出税收y(万元)与x的函数关系式;
(Ⅲ)若要使此项税收在税率调节后不少于原计划税收的83.2%,试确定x的取值范围.
某生产流水线,由于改进了设备,预计第一年产量的增长率为160%,以后每年的增长率是前一年的一半.设原来的产量是a.
(Ⅰ)写出改进设备后的第一年,第二年,第三年的产量,并写出第n年与第n-1年(n≥2,n∈N)的产量之间的关系式;
(Ⅱ)由于设备不断老化,估计每年将损失年产量的5%,如此下去,以后每年的产量是否始终是逐年提高?若是,请给予证明;若不是;请说明从第几年起,产量将比上一年减少?
若方程x2+(m-2)x-m+5=0的两个根都大于2,求实数m的取值范围.
阅读下面的解法,回答提出的问题.
解:第一步,令判别式Δ=(m-2)2-4(-m+5)≥0,
解得m≥4或m≤-4;
第二步,设两根为x1,x2,由x1>2,x2>2得
,所以.
所以m<-2.
第三步,由得m≤-4.
第四步,由第三步得出结论.
当m∈(-∞,-4]时,此方程两根均大于2.
但当取m=-6检验知,方程x2-8x+11=0两根为x=4±,其中4-<2.
试问:产生错误的原因是什么?
某厂在一个空间容积为2000m3的密封车间内生产某种化学药品.开始生产后,每满60分钟会一次性释放出有害气体am3,并迅速扩散到空气中.每次释放有害气体后,车间内的净化设备随即自动工作20分钟,将有害气体的含量降至该车间内原有有害气体含量的r%,然后停止工作,待下一次有害气体释放后再继续工作.安全生产条例规定:只有当车间内的有害气体总量不超过1.25am3时才能正常进行生产.
(Ⅰ)当r=20时,该车间能否连续正常生产6.5小时?请说明理由;
(Ⅱ)能否找到一个大于20的数据r,使该车间能连续正常生产6.5小时?请说明理由;
(Ⅲ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)
已知该净化设备的工作方式是:在向外释放出室内混合气体(空气和有害气体)的同时向室内放入等体积的新鲜空气.已知该净化设备的换气量是200m3/分,试证明该设备连续工作20分钟能够将有害气体含量降至原有有害气体含量的20%以下.(提示:我们可以将净化过程划分成n次,且n趋向于无穷大.)
已知M=(1+cos2x,1),N=(1,sin2x+a),(x∈R,a∈R,a是常数),且y=(O为坐标原点)
(1)求y关于x的函数关系式y=f(x);
(2)若x∈[0,]时,f(x)的最大值为4,求a的值,并说明此时f(x)的图像可由y=2sin(x+)的图像经过怎样的变换而得到.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com