(II)设的值. 查看更多

 

题目列表(包括答案和解析)

(I)设是各项均不为零的等差数列,且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:

①当时,求的数值;②求的所有可能值;

(II)求证:对于一个给定的正整数,存在一个各项及公差都不为零的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列。

查看答案和解析>>

(文)

设函数,其图象在点处的切线的斜率分别为 

(I)求证:;  

(II)若函数的递增区间为,求||的取值范围;

(III)若当时(是与无关的常数),恒有,试求的最小值。

查看答案和解析>>

(I)设是各项均不为零的等差数列,且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:

①当时,求的数值;②求的所有可能值;

(II)求证:对于一个给定的正整数,存在一个各项及公差都不为零的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列。

 

查看答案和解析>>

(1)设a1,a2,…,an是各项均不为零的n(n≥4)项等差数列,且公差d≠0。若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列。
(i)当n=4时,求的数值;
(ii)求n的所有可能值。
(2)求证:对于给定的正整数n(n≥4),存在一个各项及公差均不为零的等差数列b1,b2,…,bn,其中任意三项(按原来顺序)都不能组成等比数列。

查看答案和解析>>

(本小题满分13分)

    品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评为。

    现设,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令

是对两次排序的偏离程度的一种描述。

    (Ⅰ)写出的可能值集合;

(Ⅱ)假设等可能地为1,2,3,4的各种排列,求的分布列;

(Ⅲ)某品酒师在相继进行的三轮测试中,都有

(i)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);

(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。

 

查看答案和解析>>

 

一、选择题(本大题共10小题,每小题5分,共50分)

1―5 ABCDC    6―10 CDBAB

二、填空题(本大题共7小题,每小题4分,共28分)

11.    12.    13.10    14.    15.1    16.50    17.―1

三、解答题(本大题共5小题,共72分。解答应写出文字说明、证明过程或演算过程)

18.(本小题满分14分)

解:(I)    ………………3分

  ………………5分

   ………………8分

   (II)由(I)可得 …………14分

19.(本小题满分14分)

解:(I)由从而

   (II)

  ………………11分

   ………………14分

20.(本小题满分14分)

解:(1)在D1B1上取点M,使D1M=1,

连接MB,MF。 ………………1分

∵D1F=1,D1M=1,

∵BE//B1C1,BE=1,

∴MF//BE,且MF=BE

∴四边形FMBE是平行四边形。……5分

∴EF//BM,

又EF平面B1D1DB,

BM平面B1D1DB,

∴EF//平面B1D1DB。

   (II)∵△D­1B1C1是正三角形,取B1C1中点G,

连接HE,FE。 …………8分

∵ABCD―A1B1C1D1是直棱柱,

∴C1C⊥平面A1B1C1D1

又D1G平面A1B1C1D1

∴C1C⊥D1G,又D1G⊥B1C1

∴D1G⊥平面B1BCC1,又∵FH//D1G,

∴FH⊥平面B1BCC1

∴∠FEH即为直线EF与平面B1BCC1所成角。…………10分

21.(本小题满分15分)

解:(I)把点……1分

…………3分

   (II)当

单调递减区间是

22.(本小题满分15分)

    解:(I)设翻折后点O坐标为

  …………3分

   ………………4分

   ………………5分

综上,以  …………6分

说明:轨迹方程写为不扣分。

   (II)(i)解法一:设直线

解法二:由题意可知,曲线G的焦点即为……7分

   (ii)设直线

…………13分

故当

 


同步练习册答案