20.已知函数 上恒成立 (1)求的值, (2)若 (3)是否存在实数m.使函数上有最小值-5?若 存在.请求出实数m的值,若不存在.请说明理由. 解:(1) 恒成立 即恒成立 显然时.上式不能恒成立 是二次函数 由于对一切于是由二次函数的性质可得 即 . (2) 即 当.当. (3) 该函数图象开口向上.且对称轴为 假设存在实数m使函数区间 上有 最小值-5. ①当上是递增的. 解得舍去 ②当上是递减的.而在 区间上是递增的. 即 解得 ③当时.上递减的 即 解得应舍去. 综上可得.当时. 函数 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=
a+sinx
2+cosx
-bx
(a、b∈R),
(Ⅰ)若f(x)在R上存在最大值与最小值,且其最大值与最小值的和为2680,试求a和b的值;
(Ⅱ)若f(x)为奇函数:
(1)是否存在实数b,使得f(x)在(0,
3
)
为增函数,(
3
,π)
为减函数,若存在,求出b的值,若不存在,请说明理由;
(2)如果当x≥0时,都有f(x)≤0恒成立,试求b的取值范围.

查看答案和解析>>

已知函数f(x)=
1
3
ax3-
1
4
x2
+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=
3
4
x2-bx+
b
2
-
1
4
,解不等式f′(x)+h(x)<0;
(3)是否存在实数m,使函数g(x)=f′(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
x-y
1-xy
),又数列{an}满足a1=
1
2
,an+1=
2an
1+
a
2
n
,设bn=
1
f(a1)
+
1
f(a2)
+…+
1
f(an)

(1)证明:f(x)在(-1,1)上为奇函数;
(2)求f(an)的表达式;
(3)是否存在正整数m,使得对任意n∈N,都有bn
m-8
4
成立,若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=x2+bx+c(b、c∈R)且当x≤1时,f(x)≥0,当1≤x≤3时,f(x)≤0恒成立.
(1)求b、c之间的关系式;
(2)当c≥3时,是否存在实数m使得g(x)=f(x)-m2x在区间(0,+∞)上是单调函数?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案