17. 根据空气质量指数API的不同.可将空气质量分级如下表: 对某城市一年的空气质量进行监测.获得API数据按照区间进行分组.得到频率分布直方图如图5 (1)求直方图中的值, (2)计算一年屮空气质量分别为良和轻微污染的天数, (3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率. (结果用分数表示.已知 ) 数学〈理科)试题B 第3页 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:

对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间进行分组,得到频率分布直方图如图5.                          

(1)求直方图中的值;

(2)计算一年中空气质量分别为良和轻微污染的天数;

(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.

(结果用分数表示.已知 

查看答案和解析>>

(本小题满分12分)

2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别

PM2.5(微克/立方米)

频数(天)

频率

第一组

(0,15]

4

0.1

第二组

(15,30]

12

0.3

第三组

(30,45]

8

0.2

第四组

(45,60]

8

0.2

第三组

(60,75]

4

0.1

第四组

(75,90)

4

0.1

(1)写出该样本的众数和中位数(不必写出计算过程);

(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;

(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为,求的分布列及数学期望

 

查看答案和解析>>

(本小题满分12分)
2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别
 
PM2.5(微克/立方米)
 
频数(天)
 
频率
 
第一组
 
(0,15]
 
4
 
0.1
 
第二组
 
(15,30]
 
12
 
0.3
 
第三组
 
(30,45]
 
8
 
0.2
 
第四组
 
(45,60]
 
8
 
0.2
 
第三组
 
(60,75]
 
4
 
0.1
 
第四组
 
(75,90)
 
4
 
0.1
 
(1)写出该样本的众数和中位数(不必写出计算过程);
(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为,求的分布列及数学期望

查看答案和解析>>

(本小题满分12分)

根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间进行分组,得到频率分布直方图如图5.                          
(1)求直方图中的值;
(2)计算一年中空气质量分别为良和轻微污染的天数;
(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.
(结果用分数表示.已知 

查看答案和解析>>

(本小题满分12分)

根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间进行分组,得到频率分布直方图如图5.                          
(1)求直方图中的值;
(2)计算一年中空气质量分别为良和轻微污染的天数;
(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.
(结果用分数表示.已知 

查看答案和解析>>


同步练习册答案