6.某赛季.甲.乙两名篮球运动员都参加了10场比赛.他们每场比赛的得分情况用下图所示茎叶表示.根据茎叶图.下列描述正确的是 A.甲的平均得分比乙高.且甲的发挥比乙稳定 B.甲的平均得分比乙高.但乙的发挥比甲稳定 C.乙的平均得分比甲高.且乙的发挥比甲稳定 D.乙的平均得分比甲高.但甲的发挥比乙稳定 查看更多

 

题目列表(包括答案和解析)

某赛季,甲、乙两名篮球运动员都参加了10场比赛,比赛得分情况记录如下(单位:分):
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(1)根据得分情况记录,作出两名篮球运动员得分的茎叶图,并根据茎叶图,对甲、乙两运动员得分作比较,写出两个统计结论;
(2)设甲篮球运动员10场比赛得分平均值l,将10场比赛得分
y=2x
x+y=3
依次输入如图所示的程序框图进行运算,问输出的l大小为多少?并说明2x+y+C=0的统计学意义.

查看答案和解析>>

某赛季,甲、乙两名篮球运动员都参加了10场比赛,他们每场得分的情况如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别为(  )

查看答案和解析>>

精英家教网某赛季,甲、乙两名篮球运动员都参加了10场比赛,比赛得分情况记录如下(单位:分):精英家教网
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(Ⅰ)根据得分情况记录,作出两名篮球运动员得分的茎叶图,并根据茎叶图,对甲、乙两运动员得分作比较,写出两个统计结论;
(Ⅱ)设甲篮球运动员10场比赛得分平均值
.
x
,将10场比赛得分xi依次输入如图所示的程序框图进行运算,问输出的S大小为多少?并说明S的统计学意义;
(Ⅲ)如果从甲、乙两位运动员的10场得分中,各随机抽取一场不小于30分的得分,求甲的得分大于乙的得分的概率.

查看答案和解析>>

精英家教网某赛季,甲、乙两名篮球运动员都参加了10场比赛,比赛得分情况记录如下(单位:分):
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(1)根据得分情况记录,作出两名篮球运动员得分的茎叶图,并根据茎叶图,对甲、乙两运动员得分作比较,写出两个统计结论;
(2)求甲篮球运动员10场比赛得分平均值
.
x

(3)将10场比赛得分xi依次输入如图所示的程序框图进行运算,问输出的S大小为多少?并说明S的统计学意义.

查看答案和解析>>

某赛季,甲、乙两名篮球运动员都参加了10场比赛,比赛得分情况记录如下(单位:分):
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(1)根据得分情况记录,作出两名篮球运动员得分的茎叶图,并根据茎叶图,对甲、乙两运动员得分作比较,写出两个统计结论;
(2)设甲篮球运动员10场比赛得分平均值l,将10场比赛得分数学公式依次输入如图所示的程序框图进行运算,问输出的l大小为多少?并说明2x+y+C=0的统计学意义.

查看答案和解析>>

一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.B  2.A  3.B  4.B  5.C  6.D  7.D  8.C  9.B  10.A  11.D  12.A

二、填空题(本大题共4小题,每小题4分,共16分)

13.  14.  15.  16.

三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.

 17.解:(Ⅰ)

=…………………………………………………3分

函数的周期

由题意可知………………………………………6分

(Ⅱ)由(Ⅰ)可知

………………………………………8分

由余弦定理知

 又

…………………………………………………………………12分

18.证明:(Ⅰ)

…………………………………………………………………………4分

(Ⅱ)

平面平面…………………………………………8分

(Ⅲ)连接BE,易证明,由(2)知

平面………………………………………………………………………12分

19.解:(Ⅰ)设抽到相邻两个月的数据为事件A.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的.其中抽到相邻两个月的数据的情况有5种,所以

P(A)=………………………………………………………………………………4分

(Ⅱ)由数据求得  由公式求得

再由,得所以y关于x的线性回归方程为………8分

(Ⅲ)当时,

同样,当时,

所以,该小组所得线性回归方程是理想的………………………………………………12分

20.(Ⅰ)由题意得,解得………………………2分

所以

上单调递减,在上单调递增,在上单调递减……6分

(Ⅱ)因存在使得不等式成立

故只需要的最大值即可

①     若,则当时,单调递增

时,

时,不存在使得不等式成立…………………………9分

②     当时,随x的变化情况如下表:

x

+

0

-

时,

综上得,即a的取值范围是…………………………………………………12分

解法二:根据题意,只需要不等式上有解即可,即上有解,即不等式上有解即可……………………………9分

,只需要,而

,即a的取值范围是………………………………………………………12分

21.因  ①

  ②

由①-②得………………………………4分

,故数列是首项为1,公比的等比数列

………………………………………………………………………6分

(Ⅱ)假设满足题设条件的实数k,则………8分

由题意知,对任意正整数n恒有又数列单调递增

所以,当时数列中的最小项为,则必有,则实数k最大值为1…………12分

22.解:(Ⅰ)由椭圆的方程知

设F的坐标为             

是⊙M的直径,

椭圆的离心率…………………………………………6分

(Ⅱ)⊙M过点F,B,C三点,圆心M既在FC的垂直平分线上,也在BC的垂直平分线上,FC的垂直平分线方程为  ①

BC的中点为

BC的垂直平分线方程为  ②

由①②得

在直线上,

椭圆的方程为…………………………………………………………14分

 

 

 


同步练习册答案