解析:(1)的所有可能取值为1.2.3.4.并且有 , 所以满足(1)的的分布列如下: 1 2 3 4 P (2) ; -; 所以满足(2)的的分布列为 1 2 3 - - P - - (3)的所有可能取值为1.2.3.4.并且有 , 所中(3)的分布列如为 1 2 3 4 P 查看更多

 

题目列表(包括答案和解析)

现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.

(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;

(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;

(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.

【解析】依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.

设“这4个人中恰有i人去参加甲游戏”为事件

.

(1)这4个人中恰有2人去参加甲游戏的概率

(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则.由于互斥,故

所以,这个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为.

(3)的所有可能取值为0,2,4.由于互斥,互斥,故

    

所以的分布列是

0

2

4

P

随机变量的数学期望.

 

查看答案和解析>>

学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数的分布列和数学期望。

【解析】第一问中,由已知条件结合n此独立重复试验的概率公式可知,得

第二问中可能的取值为0,1,2,3  ,       

 , 

从而得到分布列和期望值

解:(I)由已知条件得 ,即,则的值为

 (Ⅱ)可能的取值为0,1,2,3  ,       

 , 

   的分布列为:(1分)

 

0

1

2

3

 

 

 

 

所以 

 

查看答案和解析>>

某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.

     视觉         [来源:]

视觉记忆能力

偏低

中等

偏高

超常

听觉

记忆

能力

偏低

0

7

5

1

中等

1

8

3

偏高

2

0

1

超常

0

2

1

1

由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为

(I)试确定的值;

(II)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率;

(III)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为,求随机变量的数学期望

【解析】1)中由表格数据可知,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生共有(10+a)人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A,则P(A)=(10+a)/40=2/5,解得a=6.……………2分

所以.b=40-(32+a)=40-38=2答:a的值为6,b的值为2.………………3分

(2)中由表格数据可知,具有听觉记忆能力或视觉记忆能力超常的学生共有8人.

方法1:记“至少有一位具有听觉记忆能力或视觉记忆能力超常的学生”为事件B,

则“没有一位具有听觉记忆能力或视觉记忆能力超常的学生”为事件

(3)中由于从40位学生中任意抽取3位的结果数为,其中具有听觉记忆能力或视觉记忆能力偏高或超常的学生共24人,从40位学生中任意抽取3位,其中恰有k位具有听觉记忆能力或视觉记忆能力偏高或超常的结果数为,………………………7分

所以从40位学生中任意抽取3位,其中恰有k位具有听觉记忆能力或视觉记忆能力偏高或超常的概率为,k=0,1,2,3

 

查看答案和解析>>


同步练习册答案