二次函数与一元一次方程.一元二次不等式之间的内在联系及相应转化 ①的图像与x轴交点的横坐标是方程f(x)=0的实根, ②当 时.f(x)>0恒成立.当 时.f(x)0恒成立.结论成立的条件是. 查看更多

 

题目列表(包括答案和解析)

(1)写出一元二次方程ax2+bx+c=0有一个正根和一个负根的充要条件
(2)二次函数y=ax2+bx+c的系数在集合A={-2,-1,0,1,2,3}中取值,且a,b,c互不相等,则共有多少条抛物线与x
轴的正、负半轴都有交点?
(3)在(2)的条件下,任取一条抛物线它恰与x轴的正、负半轴都有交点的概 率为多少?
(要求列出算式并写出结果,若无算式或算式不正确均不给分)

查看答案和解析>>

(1)写出一元二次方程ax2+bx+c=0有一个正根和一个负根的充要条件
(2)二次函数y=ax2+bx+c的系数在集合A={-2,-1,0,1,2,3}中取值,且a,b,c互不相等,则共有多少条抛物线与x
轴的正、负半轴都有交点?
(3)在(2)的条件下,任取一条抛物线它恰与x轴的正、负半轴都有交点的概 率为多少?
(要求列出算式并写出结果,若无算式或算式不正确均不给分)

查看答案和解析>>

研究、体会一元二次不等式与二次函数、一元二次方程的密切联系。

查看答案和解析>>

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:

AB=|x1-x2|=

参考以上定理和结论,解答下列问题:

设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.

(1)当△ABC为直角三角形时,求b2-4ac的值;

(2)当△ABC为等边三角形时,求b2-4ac的值.

 

查看答案和解析>>

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|=

参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.

查看答案和解析>>


同步练习册答案