已知与的关系式.利用.将关系式转化为只含有或的递推关系.再利用上述方法求出. 查看更多

 

题目列表(包括答案和解析)

已知抛物线,过M(a,0)且斜率为1的直线与抛物线交于不同的两点A、B,

    (1)求a的取值范围;

    (2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。

    分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围。对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值。

查看答案和解析>>

投资生产某种产品,并用广告方式促销,已知生产这种产品的年固定投资为10万元,每生产1万件产品还需投入16万元,又知年销量W(万件)与广告费x(万元)之间的函数关系为W=(x>0),且已知投入广告费1万元时,年销量为2万件产品.预计此种产品年销售收入M(万元)等于年成本(万元)(年成本中不含广告费用)的150%与年广告费用(万元)的50%的和.
(1)试将年利润y(万元)表示为年广告费x(万元)的函数;
(2)当年广告费为多少万元时,年利润最大?最大年利润是多少万元?

查看答案和解析>>

投资生产某种产品,并用广告方式促销,已知生产这种产品的年固定投资为10万元,每生产1万件产品还需投入16万元,又知年销量W(万件)与广告费x(万元)之间的函数关系为W=(x>0),且已知投入广告费1万元时,年销量为2万件产品.预计此种产品年销售收入M(万元)等于年成本(万元)(年成本中不含广告费用)的150%与年广告费用(万元)的50%的和.

(1)试将年利润y(万元)表示为年广告费x(万元)的函数;

(2)当年广告费为多少万元时,年利润最大?最大年利润是多少万元?

 

查看答案和解析>>

投资生产某种产品,并用广告方式促销,已知生产这种产品的年固定投资为10万元,每生产1万件产品还需投入16万元,又知年销量W(万件)与广告费x(万元)之间的函数关系为W=(x>0),且已知投入广告费1万元时,年销量为2万件产品.预计此种产品年销售收入M(万元)等于年成本(万元)(年成本中不含广告费用)的150%与年广告费用(万元)的50%的和.
(1)试将年利润y(万元)表示为年广告费x(万元)的函数;
(2)当年广告费为多少万元时,年利润最大?最大年利润是多少万元?

查看答案和解析>>

某公司帮助残疾人商店,将该商店改建成经营状况良好的某种消费品专卖店,已知该种消费品的进价为每件40元;该店每月销售量q(百件)与销售价p(元/件)之间的关系为q=
-2p+140,40≤p<58
p-80,  58≤p≤81
;职工每人每月工资为600元,该店应交付的其它费用为每月13200元.
(Ⅰ)若当销售价p为52元/件时,该店正好收支平衡,求该店的职工人数;
(Ⅱ)若该店只安排40名职工工作,求月利润关于销售价P的函数关系式,并求月利润的最大值.

查看答案和解析>>


同步练习册答案