9.以点F(1.0)和直线x=-1为对应的焦点和准线的椭圆.它的一个短轴端点为B.点P是BF的中点.求动点P的轨迹方程. 查看更多

 

题目列表(包括答案和解析)

(1)若点A(a,b)(其中a≠b)在矩阵M=
0-1
10
对应变换的作用下得到的点为B(-b,a).
(Ⅰ)求矩阵M的逆矩阵;
(Ⅱ)求曲线C:x2+y2=1在矩阵N=
0
1
2
10
所对应变换的作用下得到的新的曲线C′的方程.
(2)选修4-4:坐标系与参数方程
(Ⅰ)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位已知直线的极坐标方程为θ=
π
4
(ρ∈R)
,它与曲线
x=2+
5
cosθ
y=1+
5
sinθ
为参数)相交于两点A和B,求|AB|;
(Ⅱ)已知极点与原点重合,极轴与x轴正半轴重合,若直线C1的极坐标方程为:ρcos(θ-
π
4
)=
2
,曲线C2的参数方程为:
x=1+cosθ
y=3+sinθ
(θ为参数),试求曲线C2关于直线C1对称的曲线的直角坐标方程.
(3)选修4-5:不等式选讲
(Ⅰ)已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求实数m的取值范围.
(Ⅱ)已知实数x、y、z满足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

(1)已知矩阵A=
33
24
,向量β=
6
8

(Ⅰ)求矩阵A的特征值和对应的特征向量;
(Ⅱ)求向量α,使得A2α=β.
(2)在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点A、B的极坐标分别为(1,0)、(1,
π
2
)
,曲线C的参数方程为
x=rcosα
y=rsinα
为参数,r>0)
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)若直线AB和曲线C只有一个交点,求r的值.
(3)设不等式|x-2|>1的解集与关于x的不等式x2-ax+b>0的解集相同.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)=a
x-3
+b
5-x
的最大值,以及取得最大值时x的值.

查看答案和解析>>

(2003•东城区二模)已知抛物线C1:y2=4ax(a>0),椭圆C以原点为中心,以抛物线C1的焦点为右焦点,且长轴与短轴之比为
2
,过抛物线C1的焦点F作倾斜角为
π
4
的直线l,交椭圆C于一点P(点P在x轴上方),交抛物线C1于一点Q(点Q在x轴下方).
(Ⅰ)求点P和Q的坐标;
(Ⅱ)将点Q沿直线l向上移动到点Q′,使|QQ′|=4a,求过P和Q′且中心在原点,对称轴是坐标轴的双曲线的方程;
(Ⅲ)设点A(t,0)(常数t>4),当a在闭区间〔1,2〕内变化时,求△APQ面积的最大值,并求相应a的值.

查看答案和解析>>

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分,作答时,先在答题卡上把所选题目对应的题号填入括号中.
(1)选修4-2:矩阵与变换
已知二阶矩阵有特征值λ=-1及对应的一个特征向量
(Ⅰ)求距阵M;
(Ⅱ)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C的参数方程为为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为p2-4pcosθ+3=0.
(Ⅰ)求曲线C的普通方程和曲线P的直角坐标方程;
(Ⅱ)设曲线C和曲线P的交点为A、B,求|AB|.
(3)选修4-5:不等式选讲
已知函数f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求实数t的取值范围;
(Ⅱ)记t的最大值为T,若正实数a、b、c满足a2+b2+c2=T,求a+2b+c的最大值.

查看答案和解析>>


同步练习册答案