A 5 B 4 C D 查看更多

 

题目列表(包括答案和解析)

的值为

A.5                              B.4                              C.7                              D.0

查看答案和解析>>

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

精英家教网A.选修4-1:几何证明选讲
锐角三角形ABC内接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于点E,连接EC,求∠OEC.
B.选修4-2:矩阵与变换
曲线C1=x2+2y2=1在矩阵M=[
12
01
]的作用下变换为曲线C2,求C2的方程.
C.选修4-4:坐标系与参数方程
P为曲线C1
x=1+cosθ
y=sinθ
(θ为参数)上一点,求它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值.
D.选修4-5:不等式选讲
设n∈N*,求证:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

精英家教网A.如图,四边形ABCD内接于⊙O,弧AB=弧AD,过A点的切线交CB的延长线于E点.
求证:AB2=BE•CD.
B.已知矩阵M
2-3
1-1
所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.
C.已知圆的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)将圆的极坐标方程化为直角坐标方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

精英家教网A.选修4-1:几何证明选讲
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
x=5cosφ
y=3sinφ
(φ为参数)的右焦点,且与直线
x=4-2t
y=3-t
(t为参数)平行的直线的普通方程.
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

一、选择题:

ADBAA    BCCDC

二、填空题:

11. ;        12. ;      13

14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

三、解答题:

16.解:(Ⅰ)

                                                                …………5分

成等比数列,知不是最大边

                                                    …………6分

(Ⅱ)由余弦定理

ac=2                                                                                                        …………11分

=                                                                          …………12分

17.解:(Ⅰ)第一天通过检查的概率为,       ………………………2分

第二天通过检查的概率为,                  …………………………4分

由相互独立事件得两天全部通过检查的概率为.        ………………6分

(Ⅱ)第一天通过而第二天不通过检查的概率为,    …………8分

第二天通过而第一天不通过检查的概率为,      ………………10分

由互斥事件得恰有一天通过检查的概率为.     ……………………12分

 

18.解:方法一

(Ⅰ)取的中点,连结,由,又,故,所以即为二面角的平面角.

在△中,

由余弦定理有

所以二面角的大小是.                              (6分)

(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直线上,所以点到平面的距离即为△的边上的高.

.                              …(12分)

 

19.解:(Ⅰ)设

则   ……①

     ……②

∴②-①得  2d2=0,∴d=p=0

                                            …………6分

(Ⅱ)当an=n时,恒等式为[S(1,n)]2=S(3,n)

证明:

相减得:

相减得:

                                         ………………………………13分

20.解:(Ⅰ)∵,∴

又∵,∴

∴椭圆的标准方程为.                                      ………(3分)

的斜率为0时,显然=0,满足题意,

的斜率不为0时,设方程为

代入椭圆方程整理得:

         

,从而

综合可知:对于任意的割线,恒有.                ………(8分)

(Ⅱ)

即:

当且仅当,即(此时适合于的条件)取到等号.

∴三角形△ABF面积的最大值是.                 ………………………………(13分)

 

21.解:(Ⅰ)              ……………………………………………4分

(Ⅱ)或者……………………………………………8分

(Ⅲ)略                                        ……………………………………13分

 

 

 

雅礼中学08届高三第八次质检数学(文科)试题参考答案

 

一、选择题:

ADBAA    BCCDC

 

二、填空题:

11. ;        12. ;      13

14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

 

三、解答题:

 

16.解:(Ⅰ)

                                                                …………5分

成等比数列,知不是最大边

                                                    …………6分

(Ⅱ)由余弦定理

ac=2                                                                                                        …………11分

=                                                                          …………12分

 

17.解:(Ⅰ)第一天通过检查的概率为,       ………………………2分

第二天通过检查的概率为,                  …………………………4分

由相互独立事件得两天全部通过检查的概率为.        ………………6分

(Ⅱ)第一天通过而第二天不通过检查的概率为,    …………8分

第二天通过而第一天不通过检查的概率为,      ………………10分

由互斥事件得恰有一天通过检查的概率为.     ……………………12分

 

 

 

 

 

18.解:方法一

(Ⅰ)取的中点,连结,由,又,故,所以即为二面角的平面角.

在△中,

由余弦定理有

 

所以二面角的大小是.                              (6分)

(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直线上,所以点到平面的距离即为△的边上的高.

.                              …(12分)

 

19.解:(Ⅰ)设

则   ……①

     ……②

∴②-①得  2d2=0,∴d=p=0

                                            …………6分

(Ⅱ)当an=n时,恒等式为[S(1,n)]2=S(3,n)

证明:

相减得:

相减得:

                                         ………………………………13分

 

20.解:(Ⅰ)∵,∴

又∵,∴

∴椭圆的标准方程为.                                      ………(3分)

的斜率为0时,显然=0,满足题意,

的斜率不为0时,设方程为

代入椭圆方程整理得:

         

,从而

综合可知:对于任意的割线,恒有.                ………(8分)

(Ⅱ)

即:

当且仅当,即(此时适合于的条件)取到等号.

∴三角形△ABF面积的最大值是.                 ………………………………(13分)

 

21.解:(Ⅰ)              ……………………………………………4分

(Ⅱ)或者……………………………………………8分

(Ⅲ)略                                        ……………………………………13分


同步练习册答案