(Ⅱ)证明:平面, 查看更多

 

题目列表(包括答案和解析)

平面内n条直线,其中任何两条不平行,任何三条不共点.
(1)设这n条直线互相分割成f(n)条线段或射线,猜想f(n)的表达式并给出证明;
(2)求证:这n条直线把平面分成
n(n+1)2
+1
个区域.

查看答案和解析>>

平面直角坐标系中,O为坐标原点,已知两点M(1,-3)、N(5,1),若点C满足
OC
=t
OM
+(1-t)
ON
(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.
(Ⅰ)求证:
OA
OB

(Ⅱ)在x轴上是否存在一点P(m,0)(m∈R),使得过P点的直线交抛物线于D、E两点,并以该弦DE为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分别为CE、AB的中点.
(I)求证:OD∥平面ABC;
(II)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.

查看答案和解析>>

()(本小题满分12分)

如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。   

(Ⅰ)求证:ACSD

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

查看答案和解析>>

()选修4-1:几何证明讲

已知 ABC   中,AB=AC,  DABC外接圆劣弧上的点(不与点A,C重合),延长BD至E。

(1)       求证:AD的延长线平分CDE;

(2)       若BAC=30,ABC中BC边上的高为2+,求ABC外接圆的面积。

查看答案和解析>>

一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.B  2.A  3.B  4.B  5.C  6.B  7.D  8.C  9.D  10.A  11.C  12.A

二、填空题(本大题共4小题,每小题4分,共16分)

13.   14.18    15.   16.

三、解答题(本大题共6小题,共74分。解答应写出文字说明、证明过程或演算步骤。)

17.解:(Ⅰ)

=

函数的周期

由题意可知

解得,即的取值范围是

(Ⅱ)由(Ⅰ)可知

由余弦定理知

 又

18.(I)证明:连结,连结

    底面是正方形,的中点,

    在中,是中位线,

    而平面平面,所以,平面

(Ⅱ)证明:底面底面

,可知是等腰直角三角形,而是斜边的中线。

   ①

同样由底面

底面是正方形,有平面

平面

由①和②推得平面

平面

,所以平面

(Ⅲ)解:由(Ⅱ)知,,故是二面角的平面角

由(2)知,

设正方形的边长为,则

   

中,

中,

所以,二面角的大小为

方法二;如图所示建立空间直角坐标系,D为坐标原点,设

(I)证明:连结AC,AC交BD于G,连结EG。

依题意得A(,0,0),P(0,0, ),

底面是正方形,是此正方形的中心,故点的坐标为

,这表明

平面平面平面

(Ⅱ)证明:依题意得

,故

由已知,且,所以平面

(Ⅲ)解:设点的坐标为,则

从而所以

由条件知,,即

,解得

的坐标为,且

    

,故二面角的平面角。

,且

所以,二面角的大小为(或用法向量求)

19.解:(I)设“从第一小组选出的2人均考《极坐标系与参数方程》”为事件A,“从第二小组选出的2人均考《极坐标系与参数方程》”为事件B,由于事件A、B相互独立,

所以选出的4人均考《极坐标系与参数方程》的概率为

(Ⅱ)设可能的取值为0,1,2,3,得

的分布列为

0

1

2

3

 

的数学期望

 

20.解:由题意

(I)当时。

,解得,函数的单调增区间是

,解得,函数的单调减区间是

时,函数有极小值为

(2) 当时,由于,均有

恒成立,

由(I)知函数极小值即为最小值,

,解得

21.解(I)方程有且只有一个根,

又由题意知舍去

时,

时,也适合此等式

(Ⅱ)

由①-②得

(Ⅲ)法一:当2时,

时,数列单调递增,

又由(II)知

法二:当时,

22.(I)⊙M过点三点,圆心既在的垂直平分线上,也在的垂直平分线上,的垂直平分线方程为

的中点为

的垂直平分线方程为

由④⑤得

在直线上。

椭圆的方程为

(Ⅱ)设

是定值;

 

 


同步练习册答案