题目列表(包括答案和解析)
解:(1)点C的坐标为.
∵ 点A、B的坐标分别为,
∴ 可设过A、B、C三点的抛物线的解析式为.
将代入抛物线的解析式,得.
∴ 过A、B、C三点的抛物线的解析式为.
(2)可得抛物线的对称轴为,顶点D的坐标为
,设抛物线的对称轴与x轴的交点为G.
直线BC的解析式为.
设点P的坐标为.
解法一:如图8,作OP∥AD交直线BC于点P,
连结AP,作PM⊥x轴于点M.
∵ OP∥AD,
∴ ∠POM=∠GAD,tan∠POM=tan∠GAD.
∴ ,即.
解得. 经检验是原方程的解.
此时点P的坐标为.
但此时,OM<GA.
∵
∴ OP<AD,即四边形的对边OP与AD平行但不相等,
∴ 直线BC上不存在符合条件的点P. - - - - - - - - - - - - - - - - - - - - - 6分
解法二:如图9,取OA的中点E,作点D关于点E的对称点P,作PN⊥x轴于
点N. 则∠PEO=∠DEA,PE=DE.
可得△PEN≌△DEG .
由,可得E点的坐标为.
NE=EG=, ON=OE-NE=,NP=DG=.
∴ 点P的坐标为.∵ x=时,,
∴ 点P不在直线BC上.
∴ 直线BC上不存在符合条件的点P .
(3)的取值范围是.
.(10分)如图,已知抛物线与轴交于点,,与轴交于点.
1.(1)求抛物线的解析式及其顶点的坐标;
2.(2)设直线交轴于点.在线段的垂直平分线上是否存在点,使得点到直线的距离等于点到原点的距离?如果存在,求出点的坐标;如果不存在,请说明理由;
3.(3)过点作轴的垂线,交直线于点,将抛物线沿其对称轴平移,使抛物线与线段总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
.某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:
x(页) | 100 | 200 | 400 | 1000 | … |
y(元) | 40 | 80 | 160 | 400 |
(1) 若与满足初中学过的某一函数关系,求函数的解析式;
(2) 现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费。则乙复印社每月收费(元)与复印页数(页)的函数关系为 ;
(3) 在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?
x(页) | 100 | 200 | 400 | 1000 | … |
y(元) | 40 | 80 | 160 | 400 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com