26.(1)解:由得点坐标为 由得点坐标为 ∴··················································································· 由解得∴点的坐标为···································· ∴··························································· (2)解:∵点在上且 ∴点坐标为······················································································ 又∵点在上且 ∴点坐标为······················································································ ∴··········································································· (3)解法一:当时.如图1.矩形与重叠部分为五边形(时.为四边形).过作于.则 ∴即∴ ∴ 即··································································· 29. 问题解决 如图(1).将正方形纸片折叠.使点落在边上一点(不与点.重合).压平后得到折痕.当时.求的值. 类比归纳 在图(1)中.若则的值等于 ,若则的值等于 ,若(为整数).则的值等于 .(用含的式子表示) 联系拓广 如图(2).将矩形纸片折叠.使点落在边上一点(不与点重合).压平后得到折痕设则的值等于 .(用含的式子表示) 查看更多

 

题目列表(包括答案和解析)

解:(1)OA=1,OC=2

A点坐标为(0,1),C点坐标为(2,0)

设直线AC的解析式为y=kx+b

解得

直线AC的解析式为··················· 2分

(2)

(正确一个得2分)························· 8分

(3)如图,设

点作F

由折叠知

或2··········· 10分

查看答案和解析>>

在直角坐标系xOy中,设点A(0,t),点Q(t,b)(t,b均为非零常数).平移二次精英家教网函数y=-tx2的图象,得到的抛物线F满足两个条件:①顶点为Q;②与x轴相交于B,C两点(|OB|<|OC|).连接AB.
(1)是否存在这样的抛物线F,使得|OA|2=|OB|•|OC|?请你作出判断,并说明理由;
(2)如果AQ∥BC,且tan∠ABO=
32
,求抛物线F对应的二次函数的解析式.

查看答案和解析>>

在直角坐标系xOy中,设点A(0,t),点Q(t,b)(t,b均为非零常数).平移二次函数y=-tx2的图象,得到的抛物线F满足两个条件:①顶点为Q;②与x轴相交于B,C两点(|OB|<|OC|).连接AB.
(1)是否存在这样的抛物线F,使得|OA|2=|OB|•|OC|?请你作出判断,并说明理由;
(2)如果AQ∥BC,且tan∠ABO=数学公式,求抛物线F对应的二次函数的解析式.

查看答案和解析>>

在直角坐标系xOy中,设点A(0,t),点Q(t,b)(t,b均为非零常数),平移二次函数y=-tx2的图象,得到的抛物线F满足两个条件:①顶点为Q;②与x轴相交于B,C两点(|OB|<|OC|),连接AB。

(1)是否存在这样的抛物线F,使得|OA|2=|OB|·|OC|?请你作出判断,并说明理由;
(2)如果AQ∥BC,且tan∠ABO=,求抛物线F对应的二次函数的解析式。

查看答案和解析>>

在直角坐标系xOy中,设点A(0,t),点Q(t,b)。平移二次函数的图象,得到的抛物线F满足两个条件:①顶点为Q;②与x轴相交于B,C两点(OB<OC),连结A,B。

(1)是否存在这样的抛物线F,使得?请你做出判断,并说明理由;

(2)如果AQ∥BC,且tan∠ABO=,求抛物线F对应的二次函数的解析式。

查看答案和解析>>


同步练习册答案