待定系数法:在解数学问题时.若先判断所求的结果具有某种确定的形式.其中含有某些待定的系数.而后根据题设条件列出关于待定系数的等式.最后解出这些待定系数的值或找到这些待定系数间的某种关系.从而解答数学问题.这种解题方法称为待定系数法.它是中学数学中常用的重要方法之一. 查看更多

 

题目列表(包括答案和解析)

精英家教网九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:
 
,∴m=
 
;已知点B(-2,n)在直线y=2x-1上,求n的方法是:
 
,∴n=
 

问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先
 
,再由已知条件可得
 
.解得:
 
.∴满足已知条件的一次函数的解析式为:
 
.这个一次函数的图象与两坐标轴的交点坐标为:
 
,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,
 
的方法,叫做待定系数法.

查看答案和解析>>

如图,在直角坐标系中,是原点,三点的坐标分别,四边形是梯形,点同时从原点出发,分别作匀速运动,其中点沿向终点运动,速度为每秒个单位,点沿向终点运动,当这两点有一点到达自己的终点时,另一点也停止运动.

(1)求直线的解析式.

(2)设从出发起,运动了秒.如果点的速度为每秒个单位,试写出点的坐标,并写出此时 的取值范围.

(3)设从出发起,运动了秒.当两点运动的路程之和恰好等于梯形的周长的一半,这时,直线能否把梯形的面积也分成相等的两部分,如有可能,请求出的值;如不可能,请说明理由.

【解析】(1)根据待定系数法就可以求出直线OC的解析式(2)本题应分Q在OC上,和在CB上两种情况进行讨论.即0≤t≤5和5<t≤10两种情况(3)P、Q两点运动的路程之和可以用t表示出来,梯形OABC的周长就可以求得.当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,就可以得到一个关于t的方程,可以解出t的值.梯形OABC的面积可以求出,梯形OCQP的面积可以用t表示出来.把t代入可以进行检验

 

查看答案和解析>>

(1999•河北)九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:    ,∴m=    ;已知点B(-2,n)在直线y=2x-1上,求n的方法是:    ,∴n=   
问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先    ,再由已知条件可得    .解得:    .∴满足已知条件的一次函数的解析式为:    .这个一次函数的图象与两坐标轴的交点坐标为:    ,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,    的方法,叫做待定系数法.

查看答案和解析>>

如图,在直角坐标系中,是原点,三点的坐标分别,四边形是梯形,点同时从原点出发,分别作匀速运动,其中点沿向终点运动,速度为每秒个单位,点沿向终点运动,当这两点有一点到达自己的终点时,另一点也停止运动.

(1)求直线的解析式.

(2)设从出发起,运动了秒.如果点的速度为每秒个单位,试写出点的坐标,并写出此时 的取值范围.

(3)设从出发起,运动了秒.当两点运动的路程之和恰好等于梯形的周长的一半,这时,直线能否把梯形的面积也分成相等的两部分,如有可能,请求出的值;如不可能,请说明理由.

【解析】(1)根据待定系数法就可以求出直线OC的解析式(2)本题应分Q在OC上,和在CB上两种情况进行讨论.即0≤t≤5和5<t≤10两种情况(3)P、Q两点运动的路程之和可以用t表示出来,梯形OABC的周长就可以求得.当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,就可以得到一个关于t的方程,可以解出t的值.梯形OABC的面积可以求出,梯形OCQP的面积可以用t表示出来.把t代入可以进行检验

 

查看答案和解析>>

近年来,大学生就业日益困难.为了扶持大学生自主创业,某市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其他费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.

(1)分别求出40<x≤60;60<x<80时,月销售量y(万件)与销售

单价x(元)之间的函数关系;

(2)当销售单价定为50元时,为保证公司月利润达到5万元

(利润=销售额—生产成本—员工工资—其它费用),该公司

可安排员工多少人?

(3)若该公司有80名员工,则该公司最早可在几月后还清贷款?

 

【解析】(1)利用图象上点的坐标利用待定系数法代入y=kx+b,求出一次函数解析式即可;

(1) 根据利润=销售额—生产成本—员工工资—其它费用列方程求出解

(3)分两种情况进行讨论:当时,当时得出结论

 

查看答案和解析>>


同步练习册答案