2.结论 :⑴直线与圆锥曲线相交的弦长公式:若弦端点为,则 ,或, 或. 注:①抛物线:=x1+x2+p,②通径椭圆.双曲线:,ⅱ)抛物线:2p. ⑵过两点的椭圆.双曲线标准方程可设为: (同时大于0时表示椭圆, 时表示双曲线),当点与椭圆短轴顶点重合时最大, ⑶双曲线中的结论: ①双曲线的渐近线:, ②共渐进线的双曲线标准方程可设为为参数.≠ 0), ③双曲线为等轴双曲线渐近线互相垂直, ⑷焦点三角形问题求解:利用圆锥曲线定义和余弦定理联立求解. 查看更多

 

题目列表(包括答案和解析)

精英家教网圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知椭圆C:
x2
4
+y2=1

(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一条垂直于x轴的垂轴弦,其它条件不变,试探究xE?xF是否为定值?(不需要证明);请你给出双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
中相类似的结论,并证明你的结论.

查看答案和解析>>

圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知椭圆C:
(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为,MN是任意一条垂直于x轴的垂轴弦,其它条件不变,试探究xE?xF是否为定值?(不需要证明);请你给出双曲线中相类似的结论,并证明你的结论.

查看答案和解析>>

圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知椭圆C:
(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为,MN是任意一条垂直于x轴的垂轴弦,其它条件不变,试探究xE?xF是否为定值?(不需要证明);请你给出双曲线中相类似的结论,并证明你的结论.

查看答案和解析>>

(本题满分18分)第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分。

圆锥曲线上任意两点连成的线段称为弦。若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦。已知椭圆C:

(1)过椭圆C的右焦点作一条垂直于轴的垂轴弦,求的长度;

(2)若点是椭圆C上不与顶点重合的任意一点,是椭圆C的短轴,直线分别交轴于点和点(如右图),求的值;

(3)在(2)的基础上,把上述椭圆C一般化为是任意一条垂直于轴的垂轴弦,其它条件不变,试探究是否为定值?(不需要证明);请你给出双曲线中相类似的结论,并证明你的结论。

查看答案和解析>>


同步练习册答案