2.如图.在平行四边形ABCD中.过点B作BE⊥CD.垂足为E. 连结AE.F为AE上一点.且∠BFE=∠C. (1)求证:△ABF∽△EAD. (2)若AB=4.∠1=30°.AD=3.求BF的长. 解:(1)证明:∵AB∥CD.∴∠1=∠2. 又∵∠BFE=∠C.∠BFE+∠BFA=∠C+∠EDA ∴∠BFA=∠ADE.∴△ABF∽△EAD. (2)在Rt△ABE中.∠1=30°. 由正弦定理得:=. ∴AE==. 又=.∴BF=·AD=. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD.
(2)若AB=4,∠1=30°,AD=3,求BF的长.

查看答案和解析>>

如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD.
(2)若AB=4,∠1=30°,AD=3,求BF的长.

查看答案和解析>>

如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD.
(2)若AB=4,∠1=30°,AD=3,求BF的长.

查看答案和解析>>

如图示,已知平行四边形ABCD和矩形ACEF所在平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=1,M是线段EF的中点.
(1)求证:AC⊥BF;
(2)设二面角A-FD-B的大小为θ,求sinθ的值;
(3)设点P为一动点,若点P从M出发,沿棱按照M→E→C的路线运动到点C,求这一过程中形成的三棱锥P-BFD的体积的最小值.

查看答案和解析>>

如图示,已知平行四边形ABCD和矩形ACEF所在平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=1,M是线段EF的中点.
(1)求证:AC⊥BF;
(2)设二面角A-FD-B的大小为θ,求sinθ的值;
(3)设点P为一动点,若点P从M出发,沿棱按照M→E→C的路线运动到点C,求这一过程中形成的三棱锥P-BFD的体积的最小值.

查看答案和解析>>


同步练习册答案